Using the R-MAPE index as a resistant measure of forecast accuracy
Texto completo:
http://www.psicothema.es/pdf/4144.pdfNivel Educativo:
Tipo Documental:
Artículo de revistaEstadísticas:
Ver Estadísticas de usoMetadatos:
Mostrar el registro completo del ítemAutor:
Fecha:
2013Publicado en:
Psicothema. 2013, v. 25, n. 4; p. 500-506Resumen:
Antecedentes: el Promedio del Error Porcentual Absoluto (MAPE) es probablemente la medida de adecuación de la previsión más ampliamente utilizada. Sin embargo, no cumple el criterio de validez debido a que la distribución de los errores porcentuales absolutos habitualmente presenta una forma asimétrica a la derecha con presencia de valores alejados. En estos casos, el MAPE proporciona una sobreestimación del correspondiente parámetro poblacional. En el presente trabajo se propone un índice alternativo, denominado MAPE Resistente o R-MAPE, y basado en el cálculo del M-estimador de Huber, el cual permite superar la mencionada limitación. Método: se utilizan los resultados derivados de la aplicación de modelos de Red Neuronal Artificial (ANN) y modelos Autorregresivos Integrados de Media Móvil (ARIMA) en la previsión de una serie temporal. Resultados: se puede observar que la media aritmética, el MAPE, realiza una sobreestimación del correspondiente parámetro poblacional, a diferencia del R-MAPE, sobre un conjunto de distribuciones de errores con asimetría a la derecha y presencia de valores alejados. Conclusiones: nuestros resultados ponen de manifiesto que el R-MAPE representa una adecuada alternativa en la medición del ajuste en la previsión, debido a que proporciona una evaluación válida de dicho ajuste en comparación al MAPE.
Antecedentes: el Promedio del Error Porcentual Absoluto (MAPE) es probablemente la medida de adecuación de la previsión más ampliamente utilizada. Sin embargo, no cumple el criterio de validez debido a que la distribución de los errores porcentuales absolutos habitualmente presenta una forma asimétrica a la derecha con presencia de valores alejados. En estos casos, el MAPE proporciona una sobreestimación del correspondiente parámetro poblacional. En el presente trabajo se propone un índice alternativo, denominado MAPE Resistente o R-MAPE, y basado en el cálculo del M-estimador de Huber, el cual permite superar la mencionada limitación. Método: se utilizan los resultados derivados de la aplicación de modelos de Red Neuronal Artificial (ANN) y modelos Autorregresivos Integrados de Media Móvil (ARIMA) en la previsión de una serie temporal. Resultados: se puede observar que la media aritmética, el MAPE, realiza una sobreestimación del correspondiente parámetro poblacional, a diferencia del R-MAPE, sobre un conjunto de distribuciones de errores con asimetría a la derecha y presencia de valores alejados. Conclusiones: nuestros resultados ponen de manifiesto que el R-MAPE representa una adecuada alternativa en la medición del ajuste en la previsión, debido a que proporciona una evaluación válida de dicho ajuste en comparación al MAPE.
Leer menos