Generalizing is necessary or even unavoidable
Texto completo:
http://www.pna.es/Numeros2/pdf/O ...Nivel Educativo:
Tipo Documental:
Artículo de revistaEstadísticas:
Ver Estadísticas de usoMetadatos:
Mostrar el registro completo del ítemFecha:
2015Publicado en:
PNA. 2015, v. 9, n. 3 ; p. 143-164Resumen:
Los problemas de geometría y mecánica han motivado la generalización de los conceptos de número y función. Esto muestra cómo la aplicación y la generalización previenen que las matemáticas sean un mero formalismo. Los pensamientos son signos y los signos tienen un significado dentro de un cierto contexto. El significado es una función de un término: esta función produce un patrón. El álgebra o la moderna axiomática vienen a la mente como ejemplos. Sin embargo, las matemáticas estrictamente formales no prestaron suficiente atención al hecho de que las teorías axiomáticas modernas requieren un elemento complementario, en términos de aplicaciones intencionadas o modelos, para no terminar en un juego meramente formal.
Los problemas de geometría y mecánica han motivado la generalización de los conceptos de número y función. Esto muestra cómo la aplicación y la generalización previenen que las matemáticas sean un mero formalismo. Los pensamientos son signos y los signos tienen un significado dentro de un cierto contexto. El significado es una función de un término: esta función produce un patrón. El álgebra o la moderna axiomática vienen a la mente como ejemplos. Sin embargo, las matemáticas estrictamente formales no prestaron suficiente atención al hecho de que las teorías axiomáticas modernas requieren un elemento complementario, en términos de aplicaciones intencionadas o modelos, para no terminar en un juego meramente formal.
Leer menos