Cómo aplicar las pruebas paramétricas bivariadas 't' de Student y ANOVA en SPSS : caso práctico
Texto completo:
https://revistes.ub.edu/index.ph ...Ver/ Abrir
Nivel Educativo:
Tipo Documental:
Artículo de revistaEstadísticas:
Ver Estadísticas de usoMetadatos:
Mostrar el registro completo del ítemFecha:
2012Publicado en:
REIRE : revista d'innovació i recerca en educació. 2012, v. 5, n. 2, julio ; p. 83-100Resumen:
Las pruebas paramétricas son un tipo de pruebas de significación estadística que cuantifican la asociación o independencia entre una variable cuantitativa y una categórica. Las pruebas paramétricas exigen ciertos requisitos previos para su aplicación: la distribución Normal de la variable cuantitativa en los grupos que se comparan, la homogeneidad de varianzas en las poblaciones de las que proceden los grupos y una n muestral no inferior a 30. Su incumplimiento conlleva la necesidad de recurrir a pruebas estadísticas no paramétricas. Las pruebas paramétricas se clasifican en dos: prueba t (para una muestra o para dos muestras relacionadas o independientes) y prueba ANOVA (para más de dos muestras independientes).
Las pruebas paramétricas son un tipo de pruebas de significación estadística que cuantifican la asociación o independencia entre una variable cuantitativa y una categórica. Las pruebas paramétricas exigen ciertos requisitos previos para su aplicación: la distribución Normal de la variable cuantitativa en los grupos que se comparan, la homogeneidad de varianzas en las poblaciones de las que proceden los grupos y una n muestral no inferior a 30. Su incumplimiento conlleva la necesidad de recurrir a pruebas estadísticas no paramétricas. Las pruebas paramétricas se clasifican en dos: prueba t (para una muestra o para dos muestras relacionadas o independientes) y prueba ANOVA (para más de dos muestras independientes).
Leer menos