El pensamiento bayesiano, un pensamiento computacional omnipresente
Texto completo:
https://revistas.um.es/red/artic ...Ver/ Abrir
Nivel Educativo:
Tipo Documental:
Artículo de revistaEstadísticas:
Ver Estadísticas de usoMetadatos:
Mostrar el registro completo del ítemFecha:
2021Publicado en:
RED. Revista de educación a distancia, 2021, v. 21, n. 68 ; 20 p.Resumen:
En su acepción más sencilla se considera el pensamiento computacional como una serie de habilidades específicas que sirven a los programadores para hacer su tarea, pero que también son útiles a la gente en su vida profesional y en su vida personal como una forma de organizar la resolución de sus problemas, y de representar la realidad que hay en torno a ellos. En un esquema más elaborado este complejo de habilidades constituye una nueva alfabetización ---o la parte más sustancial de ella--- y una inculturación para manejarse en una nueva cultura, la cultura digital en la sociedad del conocimiento. Se conoce cómo se usa la probabilidad bayesiana, en modelos de epidemiología, para determinar modelos de evolución de datos sobre contagio y fallecimientos en el COVID y en el procesamiento del lenguaje natural. Igualmente se podría ver en multitud de casos en los más variados campos científicos y de análisis de procesos. Con la automatización de los métodos bayesianos y el uso de modelos gráficos probabilísticos es posible identificar patrones y anomalías en voluminosos conjuntos de datos en campos tan diversos como son los corpus lingüísticos, los mapas astronómicos, añadir funcionalidades a la práctica de la resonancia magnética, o a los hábitos de compra con tarjeta, online o smartphones. En esta nueva forma de proceder, se asocian el análisis de grandes datos y la teoría bayesiana. Si se considera que el pensamiento bayesiano, esta forma de proceder, como un elemento más y relevante del pensamiento computacional, entonces a lo dicho en anteriores ocasiones hay que añadir ahora la idea de pensamiento computacional generalizado, que va más allá de la educación. Ya no se trata de aspectos puramente asociados a la práctica profesional o vital ordinaria para manejarse por la vida y el mundo del trabajo, como ha sido lo que hemos llamado pensamiento computacional hasta ahora, sino como una preparación para la investigación básica y para una metodología investigadora en casi todas las disciplinas. El pensamiento computacional está influyendo en la investigación en casi todas las áreas, tanto en las ciencias como en las humanidades. Una instrucción centrada en esta componente de pensamiento computacional, el pensamiento bayesiano, o que lo incluyese en una fase temprana, en Secundaria (K-12), incluyendo la fórmula de la probabilidad inversa, permitiría, basándonos en los First principles of learning de Merrill, y en particular en el principio de activación, activar estos aprendizajes como componentes muy valiosos y muy complejos en una etapa posterior de la actividad profesional o investigadora, o en la fase de formación, grados y postgrados, de estas profesiones o que capacitan para estas actividades y profesiones.
En su acepción más sencilla se considera el pensamiento computacional como una serie de habilidades específicas que sirven a los programadores para hacer su tarea, pero que también son útiles a la gente en su vida profesional y en su vida personal como una forma de organizar la resolución de sus problemas, y de representar la realidad que hay en torno a ellos. En un esquema más elaborado este complejo de habilidades constituye una nueva alfabetización ---o la parte más sustancial de ella--- y una inculturación para manejarse en una nueva cultura, la cultura digital en la sociedad del conocimiento. Se conoce cómo se usa la probabilidad bayesiana, en modelos de epidemiología, para determinar modelos de evolución de datos sobre contagio y fallecimientos en el COVID y en el procesamiento del lenguaje natural. Igualmente se podría ver en multitud de casos en los más variados campos científicos y de análisis de procesos. Con la automatización de los métodos bayesianos y el uso de modelos gráficos probabilísticos es posible identificar patrones y anomalías en voluminosos conjuntos de datos en campos tan diversos como son los corpus lingüísticos, los mapas astronómicos, añadir funcionalidades a la práctica de la resonancia magnética, o a los hábitos de compra con tarjeta, online o smartphones. En esta nueva forma de proceder, se asocian el análisis de grandes datos y la teoría bayesiana. Si se considera que el pensamiento bayesiano, esta forma de proceder, como un elemento más y relevante del pensamiento computacional, entonces a lo dicho en anteriores ocasiones hay que añadir ahora la idea de pensamiento computacional generalizado, que va más allá de la educación. Ya no se trata de aspectos puramente asociados a la práctica profesional o vital ordinaria para manejarse por la vida y el mundo del trabajo, como ha sido lo que hemos llamado pensamiento computacional hasta ahora, sino como una preparación para la investigación básica y para una metodología investigadora en casi todas las disciplinas. El pensamiento computacional está influyendo en la investigación en casi todas las áreas, tanto en las ciencias como en las humanidades. Una instrucción centrada en esta componente de pensamiento computacional, el pensamiento bayesiano, o que lo incluyese en una fase temprana, en Secundaria (K-12), incluyendo la fórmula de la probabilidad inversa, permitiría, basándonos en los First principles of learning de Merrill, y en particular en el principio de activación, activar estos aprendizajes como componentes muy valiosos y muy complejos en una etapa posterior de la actividad profesional o investigadora, o en la fase de formación, grados y postgrados, de estas profesiones o que capacitan para estas actividades y profesiones.
Leer menos