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Resumen

En este trabajo definimos una teoŕıa de cohomoloǵıa para conjuntos
simpliciales entendidos como ∞-categoŕıas. Tras su definición,
estudiamos las propiedades elementales de la cohomoloǵıa y
especialmente su relación con cierta generalización de los espacios
de Eilenberg-MacLane.

Abstract

In this memoir we define a cohomology theory for simplicial sets
thought of as ∞-categories. After its definition, we study the
elementary properties of the cohomology and especially its relation
with a certain generalization of Eilenberg-MacLane spaces.
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Chapter 1

Introduction

1.1 Motivation

Mathematical concepts [...] are brought
into being by a series of successive
abstractions and generalizations, each
resting on a combination of experience
with preceding abstract concepts.

A. D. Aleksandrov,
“Mathematics: Its Content, Methods and

Meaning”

During the first half of the twentieth century, the blossoming of algebraic topology was
marked by the development of homotopy, homology and cohomology. These functors-to-be were
the motivation behind the birth of category theory, which in turn provided the language and
necessary abstraction for their emancipation from algebraic topology.

For instance, homology and cohomology engendered homological algebra, studying the properties
of the involved functors and of (co)chain complexes. The emancipation from algebraic topology
also brought with it the expansion of the scope of these tools, not being confined to classifying
topological spaces, instead being applied to various geometric and algebraic structures. The
example we are more interested in is the development of a cohomology theory for small categories.

Meanwhile, category theory became a consolidated subject and thus began a process of
abstraction of its own to higher category theory, mainly inspired precisely by homotopy theory
and its requirements. The category of categories is a motivating example for n-categories as
it not only has objects and morphisms, it also naturally has 2-morphisms between its (1-
)morphisms, hence constituting a first example of a 2-category. This process can be repeated with
3-morphisms between 2-morphisms, 4-morphisms between 3-morphisms... up to ∞-categories,
where there exist k-morphisms for each k ≥ 1.

However, there needs to be some conditions on the associativity and identity of these k-
morphisms. The choice of these conditions is not trivial and, in order to account for some
important motivating examples, the notion of associativity needs to be weakened from equality
to a more subtle notion of equivalence. The vagueness of this definition made possible the
appearance of multiple models for the notion of ∞-category. Joyal defined a homotopy theory
(in technical terms, a model category structure) on simplicial sets which has proven to be the

4



CHAPTER 1. INTRODUCTION 5

most successful model for the theory of infinity-categories.

Now, as∞-category theory has grown and become more fruitful, it needs more tools. One of
the goals of any theory is to classify its objects in some sense, and one tool that has proven useful
in this task is cohomology. That is what this memoir aims to do, develop a cohomology theory
for ∞-categories. This cohomology generalizes the cohomology of small categories presented by
Baues and Wirsching in [1].

One possible application for this cohomology is to construct a Postnikov system interpolating
between a simplicial set and its fundamental category. Every step of this interpolation would
be classified by a cohomology class, analogously to the way in which Postnikov systems for
topological spaces are constructed. This application exceeds the scope of this memoir.

In chapter 2 of this memoir we explain the basic ingredients needed to develop our theory. We
begin recalling some results from category theory, then present simplicial sets and their relation
to categories, in order to define quasicategories. The last two sections of the chapter present
the cohomology of small categories. In chapter 3 we define the cohomology of ∞-categories and
study its properties. Then we study the relation of the cohomology with a generalization of
Eilenberg-MacLane spaces and finish proving that this generalization is also a quasicategory.

1.2 Notation

Although we will try to clarify the notation used in each section and result, there are some
conventions assumed throughout this memoir that we set now.

In a sequence of consecutive natural numbers with one of them missing we will denote the
one missing with a circumflex, as in:

(0, 1, . . . , i− 1, i+ 1, . . . , n− 1, n) = (0, 1, . . . , î, . . . , n− 1, n).

When talking about categories, an unspecified one will be denoted by C, its objects Obj(C)
and its morphisms Mor(C).

Morphisms between a pair of objects A,B of a category C will be denoted by MorC(A,B).
Although in some cases we will drop the subscript if the context category is clear or irrelevant.

The opposite category of C will be denoted by Cop.

Any functor will be assumed to be covariant.

The identity morphism for an object C will be denoted by idC , although in some cases we
will drop the subscript if the context category is clear or irrelevant.

Finally, we are going to use some known categories that will be denoted with boldface letters:

• Set is the category of sets and maps.

• Ab is the category of abelian groups and group homomorphisms.

• Cat is the category of small categories and functors.



Chapter 2

Preliminaries

In this chapter we are going to list some known results and definitions that will be used
throughout our memoir.

2.1 Category theory

In order to talk about ∞-categories we are obviously going to need to use (1-)category
theory. Although we will take most of it as known, there are a few definitions that we are going
to reference explicitly. These results mainly follow [2] and their proofs are available there.

Definition 2.1.1 (Natural isomorphism). A natural transformation α : F → G will be called a
natural isomorphism if for every object C in the source of F and G, the component αC : F (C)→
G(C) is an isomorphism. We will denote it by α : F ∼= G.

Definition 2.1.2 (Equivalence of categories). An equivalence of two categories C and C′

consists of two functors together with two natural isomorphisms:

C C′,
F

G

η : idC
∼= GF,

ε : FG ∼= idC′ .

Definition 2.1.3 (Adjoint functors). An adjunction between two categories C and C′ is a pair
of functors F : C → C′ and G : C′ → C and a natural bijection for each C ∈ Obj(C) and
C ′ ∈ Obj(C′):

MorC′(F (C), C ′) ∼= MorC(C,G(C ′)).

The functor F is called the left adjoint and G the right adjoint.

Lemma 2.1.4 (Yoneda lemma). Given a category C and a functor F : C → Set. For any
object A in C, there exists a bijection:

MorSet(MorC(A,−), F ) ∼= F (A),

associating to each natural transformation α : MorC(A,−)→ F the element αA(idA) of the set
F (A).

The last result of this section explains the construction of a category from a given partially
ordered set (poset), which we will use later:
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CHAPTER 2. PRELIMINARIES 7

Definition 2.1.5 (Category of a poset). Given a poset S, it can be viewed as a category (which
we will also denote by S) with:

• Objects: elements of the set S.

• Morphisms: there exists a unique morphism i→ j if and only if i ≥ j, for any i, j ∈ S.

Any order-preserving map between posets, f : S → S′, can also be viewed as a functor
between their associated categories.

2.2 Simplicial objects

After category theory, the other ingredient we need to define∞-categories are simplicial sets.
In this section we list some basic definitions for them.

Definition 2.2.1 (Simplex category). The simplex category, denoted by ∆, is given by:

• Objects: finite totally ordered sets [n] = {0 < 1 < . . . < n} for n ≥ 0.

• Morphisms: weakly order-preserving maps between those sets. More explicitly, given a
morphism α : [m]→ [n], for each 0 ≤ i < j ≤ m, it satisfies 0 ≤ α(i) ≤ α(j) ≤ n.

There are some special morphisms in ∆, the cofaces and codegeneracies, denoted respectively
by di and si for each n ≥ 0 and for each 0 ≤ i ≤ n.

di : [n− 1]→ [n],

di(j) =


j if j < i,

j + 1 if j ≥ i,
(2.2.2)

si : [n+ 1]→ [n],

si(j) =


j if j ≤ i,

j − 1 if j > i.

Any morphism α : [m] → [n] in ∆ can be factorized as a composition of cofaces and
codegeneracies, so we will usually only consider these instead of all morphisms.

The objects of ∆ can also be viewed as categories, as in Definition 2.1.5, and their morphisms
as functors.

Definition 2.2.3 (Simplicial object). A simplicial object in a category C is a functor ∆op → C.

A particular type of simplicial objects are simplicial sets, which we can describe explicitly:

Definition 2.2.4 (Simplicial set). A simplicial set X is a family of sets and maps between them:

· · · Xn Xn−1 · · · X2 X1 X0.
d0,...,dn

s0,...,sn−1

d0,d1,d2 d0,d1

s0,s1 s0

More precisely, we have the following ingredients:
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• Sets Xn for each n ≥ 0, called sets of n-simplices.

• Face and degeneracy maps di : Xn → Xn−1 and si : Xn → Xn+1, for 0 ≤ i ≤ n, satisfying
the following conditions, called simplicial identities:

didj = dj−1di if i < j,

disj = sj−1di if i < j,

djsj = dj+1sj = id, (2.2.5)

disj = sjdi−1 if i > j + 1,

sisj = sj+1si if i ≤ j.

Considering Definition 2.2.3, this construction defines a functorX : ∆op → Set withX([n]) =
Xn, X(di) = di and X(si) = si.

Definition 2.2.6 (Simplicial map). Given two simplicial setsX and Y , a simplicial map between
them, f : X → Y , is a collection of maps between sets fn : Xn → Yn for n ≥ 0, satisfying the
following condition for any α : [m]→ [n]:

fm ◦X(α) = Y (α) ◦ fn.
where we are considering X and Y as functors.

We know that any morphism α : [m]→ [n] can be factorized as a composition of cofaces and
codegeneracies, thus for f : X → Y to be a simplicial map it suffices that:

fndi = difn+1, for each 0 ≤ i ≤ n+ 1,

fnsi = sifn−1, for each 0 ≤ i ≤ n− 1.

From now on, we will not use the subscript in fn, instead we will distinguish each of the
maps by context.

We will denote the category of simplicial sets and simplicial maps by sSet.

There is a particular family of simplicial sets which we are going to use extensively in this
memoir:

Definition 2.2.7 (n-simplex). The standard n-simplex, which we will refer to as n-simplex, is
the simplicial set ∆[n] := Mor∆(−, [n]).

The set of n-simplices of ∆[n], ∆[n]n, is defined as Mor∆([n], [n]) and thus it has a distinguished
element id[n]. The element di(id[n]) ∈ ∆[n]n−1 will be called the i-th face of the n-simplex. We
can depict the first few simplices as:

∆[0] : ∆[1] : ∆[2] :

0

0

1

0 2

1
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Definition 2.2.8 (Horns of a simplex). For n ≥ 1 and 0 ≤ i ≤ n, the i-horn of the n-simplex,
Λi[n], is, intuitively, the sub-simplicial set of ∆[n] given by the union of its faces except the i-th
one. More explicitly:

Λi[n]m = {α : [m]→ [n] | ([n] \ {i}) 6⊂ α([m])}.

The i-horns for 0 < i < n will be called inner horns.

For example, the 2-simplex has three horns, but only one of them, Λ1[2], is an inner horn:

Λ0[2] : Λ1[2] : Λ2[2] :

0 2

1

0 2

1

0 2

1

Corollary 2.2.9. For any simplicial set X, applying the Yoneda Lemma we obtain that its
n-simplices are in bijection with the simplicial maps from the standard n-simplex to X:

Xn
∼= MorsSet(∆[n], X).

This means that any a ∈ Xn can be thought of as a simplicial map a : ∆[n] → X, satisfying
precisely a(id[n]) = a ∈ Xn. We will denote both elements simply by a and will distinguish
between them only by context.

2.3 Simplicial sets and categories

There are two important functors between categories and simplicial sets which are going to
play a central role in this memoir.

Definition 2.3.1 (Nerve of a category). Given a small category C, its nerve N•(C) is a simplicial
set with Nn(C) defined as the set of functors from [n] to C:

Nn(C) = MorCat([n],C).

Given a coface map of ∆, di : [n−1]→ [n], it induces face maps on the nerve, di : Nn(C) −→
Nn−1(C), defined by precomposition with di:

[n− 1] [n] C.di

di(f)

f

Codegeneracies si : [n]→ [n− 1] analogously induce degeneracies si : Nn−1(C)→ Nn(C).

An element of Nn(C) (a functor [n] → C) can be viewed as an n-tuple of composable
morphisms in C:

Cn Cn−1 · · · C1 C0.
fn fn−1 f2 f1
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We will denote such an element by (f1, f2, . . . , fn) ∈ Nn(C). Applying the face and degeneracy
maps yields:

d0(f1, . . . , fn) = (f2, . . . , fn),

di(f1, . . . , fn) = (f1, . . . , fifi+1, . . . , fn), for 0 < i < n,

dn(f1, . . . , fn) = (f1, . . . , fn−1),

si(f1, . . . , fn) = (f1, . . . , fi, idCi , fi+1, . . . , fn), for 0 ≤ i ≤ n.

(2.3.2)

There are two other related identities that will be useful later:

dn−1
1 (f1, . . . , fn) = f1 ◦ · · · ◦ fn,

di−1
0 dn−ii+1 (f1, . . . , fn) = fi.

(2.3.3)

Another convenient fact is that the nerve of the category [n] is the standard n-simplex:

Nm([n]) = MorCat([m], [n]) = Mor∆([m], [n]) = ∆[n]m.

We claim that the nerve construction defines a functor Cat → sSet, for that we need to
define how it acts on morphisms:

Definition 2.3.4. Given a functor F : C → C′, it induces a simplicial map N(F ) : N(C) →
N(C′) sending (f1, . . . , fn) ∈ Nn(C) to:

N(F )(f1, . . . , fn) = (F (f1), . . . , F (fn)) ∈ Nn(C′).

Now, we define the other functor, from simplicial sets to categories:

Definition 2.3.5 (Fundamental category). Given a simplicial set X, its fundamental category,
τ1X, is defined as follows:

• Objects: the 0-simplices of X, that is, the elements of the set X0.

• Morphisms: the morphisms of τ1X are generated by the elements of X1 regarded as
morphisms a : d1a→ d0a for a ∈ X1, modulo the relations d1a ∼ d2a ◦ d0a for a ∈ X2 and
s0a ∼ ida for a ∈ X0. Given an element a ∈ X1, we will denote its class by {a}.

This shows how the functor τ1 : sSet→ Cat behaves on objects, on morphisms we have:

Definition 2.3.6. Given a simplicial map f : X → Y , it induces a functor τ1f : τ1X → τ1Y
defined:

• On objects: given a ∈ Obj(τ1X) = X0, τ1f(a) = f(a) ∈ Y0 = Obj(τ1Y ).

• On morphisms: given {a} : d1a→ d0a, we define τ1f({a}) = {f(a)} : d1f(a)→ d0f(a), .

One fact about these functors is that they have a nice relationship between them:

Lemma 2.3.7. The nerve functor is right adjoint to the fundamental category functor:

sSet Cat,
τ1

N

which means there is a natural bijection between the sets of morphisms MorCat(τ1X,C) ∼=
MorsSet(X,NC) for each simplicial set X and category C.
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This is proven, for example, in [3, Corollary 004N].

This means that the identity functor τ1X → τ1X induces a unique simplicial morphism:

Ψ: X −→ Nτ1X. (2.3.8)

More explicitly, the image by Ψ of an element a ∈ Xn is defined as:

Cn Cn−1 · · · C1 C0,
{an} {an−1} {a2} {a1}

with {ai} = {di−1
0 dn−ii+1a} and Ci = di0d

n−i
i+1a for 1 ≤ i ≤ n and C0 = dn1a.

Analogously, the identity NC → NC induces a canonical functor τ1NC → C, but in this
case it is an identity. This result can be found in [3, Remark 00HG].

2.4 ∞-category theory

Having explained categories and simplicial sets, now we can present and define our model for
∞-categories: quasicategories. We will previously define the related concept of Kan complex.

Definition 2.4.1 (Kan complex). A simplicial set X is a Kan complex if for any map Λi[n]→ X,
and taking the canonical inclusion Λi[n] ↪→ ∆[n], there exists a morphism from the n-simplex
to X making the following diagram commute:

Λi[n] X

∆[n]

In this case the morphism ∆[n]→ X will be called a filler morphism.

Definition 2.4.2 (Quasicategory). A quasicategory is a simplicial set X satisfying the Kan
condition (having a filler morphism) for the inner horns, 0 < i < n.

Λi[n] X

∆[n]

for 0 < i < n.

After defining quasicategories, we want a way to define an analogous concept to the equivalence
of 1-categories, but in this case we will need some previous notation:

Definition 2.4.3. Given two simplicial sets X and Y , we define the simplicial set of morphisms
between them, XY , as:

XY
n = Mor∆(Y ×∆[n], X).

With faces, di : X
Y
n → XY

n−1, defined for γ ∈ XY
n as:

Y ×∆[n− 1] Y ×∆[n] X.
id×di

diγ

γ

https://kerodon.net/tag/004N
https://kerodon.net/tag/00HG
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And degeneracies defined analogously.

Definition 2.4.4. Given three simplicial sets X, Y , Z and a simplicial map f : X → Y , it
induces a map f∗ : ZY → ZX defined as:

Y ×∆[n] X ×∆[n]

Y ×∆[n].

Z Z

γ

f×id

f∗γ

γ

Definition 2.4.5 (Quasiequivalence). Given two simplicial sets X and Y and a simplicial map
between them, f : X → Y . We say f is a quasiequivalence if for every quasicategory Z the
induced map τ1(f∗) is an equivalence of 1-categories:

τ1(f∗) : τ1(ZY ) −→ τ1(ZX).

2.5 Natural systems

The cohomology of ∞-categories we are going to develop in later sections will be defined
with natural systems as its coefficients, a concept which was introduced in [1].

Natural systems are not directly defined on a category, instead, they use a certain endofunctor
on the category of small categories, which we define now:

Definition 2.5.1 (Factorization category). Given a small category C, its factorization category,
FC, is defined as follows:

• Objects: morphisms of C.

• Morphisms: a morphism (h, k) : f → g is a commutative diagram:

• •

• •

h

f g ,

k

i.e. such that g = hfk. Composition is defined as (h′, k′)(h, k) = (hh′, k′k).

This construction induces a functor F : Cat→ Cat, defined on objects in the obvious way.
A functor F : C→ C′ defines another one:

F(F ) : FC −→ FC′.

This functor F(F ) is defined on objects (which are morphisms of C) as F(F )(f) = F (f)
and on morphisms as F(F )(h, k) = (F (h), F (k)).

Now, we can define what a natural system is.
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Definition 2.5.2 (Natural system). Given a small category C, a natural system (of abelian
groups) on C is a functor D : FC → Ab. Each morphism (h, k) : f → g in FC induces a
homomorphism:

D(h, k) : D(f) −→ D(hfk) = D(g).

Given a natural system on C, D : FC → Ab, any functor F : C′ → C induces a natural
system on C′, denoted by F ∗(D):

FC′ FC Ab,
F(F )

F ∗(D)

D (2.5.3)

defined simply by F ∗(D)(f) = D(F (f)) and F ∗(D)(h, k) = D(F (h), F (k)).

To finish this section, we define the category of all natural systems. This category is an
adaptation of the one presented in [1], although centered on ∞-categories instead of ordinary
ones. Nevertheless, we will use the same notation as Baues and Wirsching.

Definition 2.5.4 (Category of natural systems). The category Nat of natural systems on ∞-
categories is defined with:

• Objects: pairs (X,D), where X is a simplicial set and D a natural system on τ1X.

• Morphisms: (λ, µ) : (X,D)→ (X ′, D′) where λ : X ′ → X is a simplicial map and µ : (τ1λ)∗D →
D′ is a natural transformation.

With composition for (λ, µ) : (X,D) → (X ′, D′) and (λ′, µ′) : (X ′, D′) → (X ′′, D′′) defined
as:

(λ′, µ′) ◦ (λ, µ) = (λλ′, µ′ ◦ (τ1λ
′)∗µ),

X ′′ X ′ X,λ′ λ

(τ1λ
′)∗(τ1λ)∗D (τ1λ

′)∗D′ D′′.
(τ1λ′)∗µ µ′

This means (λ, µ) = (id, µ)(λ, id) : (X,D)→ (X ′, D′), where (λ, id) : (X,D)→ (X ′, (τ1λ)∗D)
and (id, µ) : (X ′, (τ1λ)∗D)→ (X ′, D′).

2.6 Baues-Wirching’s cohomology

We recall the cohomology of small categories defined by Baues and Wirsching to compare it
later with our own construction:

Definition 2.6.1 (Baues-Wirsching’s cochains). Given a small category C and a natural system
D : FC→ Ab, the n-th Baues-Wirsching cochain group of C with coefficients in D, FnBW (C, D),
is the abelian group of maps:

f : Nn(C) −→
⊔

g∈Mor(C)

D(g), with f(g1, . . . , gn) ∈ D(g1 ◦ · · · ◦ gn),

for n > 0. For n = 0, F 0
BW (C, D) is the abelian group of maps:

f : N0(C) −→
⊔

A∈Obj(C)

D(idA), with f(A) ∈ D(idA).
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The coboundary between cochains, ∂BW : Fn−1
BW (C, D)→ FnBW (C, D) is defined as:

∂BW f(a1, . . . , an) =D(a1, id)f(a2, . . . , an)

+
n−1∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an) (2.6.2)

+ (−1)nD(id, an)f(a1, . . . , an−1)

for n > 1. For n = 1, with a : A→ B:

∂BW f(a) = D(a, id)f(A)−D(id, a)f(B). (2.6.3)

We will denote the n-cocycles by ZnBW (C, D).

Definition 2.6.4 (Baues-Wirsching’s cohomology). Given a small category C and a natural
system on C, D. We define the cohomology of C with coefficients in D, Hn

BW (C, D), as the
cohomology of the cochain complex FnBW (C, D) with the coboundary ∂BW .



Chapter 3

Cohomology of ∞-categories

With all the previous prerequisites laid out we can finally define the cohomology of an ∞-
category and its elementary properties. To simplify the writing from now on, unless we say
otherwise, we assume X is a simplicial set and D is a natural system on τ1X.

3.1 Definition and basic properties

Definition 3.1.1 (Cochains). The n-cochains of X with coefficients in D, Fn(X,D), are the
abelian group of maps:

f : Xn −→
⊔

g∈Mor(τ1X)

D({g}), such that f(a) ∈ D({dn−1
1 a}),

for n > 0. For n = 0, F 0(X,D) is the abelian group of maps:

f : X0 −→
⊔

a∈Obj(τ1X)

D({ida}), such that f(a) ∈ D({ida}).

Its coboundary ∂ : Fn−1(X,D)→ Fn(X,D), is defined for a ∈ Xn as:

∂f(a) = D({dn−1
2 a}, id)f(d0a) +

n−1∑
i=1

(−1)if(dia) + (−1)nD(id, {dn−1
0 a})f(dna) (3.1.2)

for n > 1. Lastly, for n = 1 the coboundary is defined as:

∂f(a) = D({a}, id)f(d0a)−D(id, {a})f(d1a). (3.1.3)

We will also denote the n-cocycles by Zn(X,D).

Having defined the cochains, the next step is to check that they are correctly defined and
work as expected:

Lemma 3.1.4. The coboundary ∂ is well defined.

Proof. We must show that the coboundary is compatible with the natural system, that is, we
want to check that ∂f(a) actually belongs to D({dn−1

1 a}).

We begin by checking the case n > 1. In the first summand of (3.1.2) we have f(d0a) ∈
D({dn−2

1 d0a}) and thus:

D({dn−1
2 a}, id)f(d0a) ∈ D({dn−1

2 a ◦ dn−2
1 d0a}).

15
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However, using the simplicial identities and the relations of Mor(τ1X) we get:

{dn−1
2 a ◦ dn−2

1 d0a} = {d2d
n−2
2 a ◦ d0d

n−2
2 a} = {d1d

n−2
2 a} = {dn−1

1 a},

where we are using the relation d1a ∼ d2a ◦ d0a, a ∈ X2, for the 2-simplex dn−2
2 a ∈ X2.

All the terms of the summation from (3.1.2) satisfy f(dia) ∈ D({dn−2
1 dia}) = D({dn−1

1 a}),
because i 6= 0, n.

The last summand is analogous to the first one:

D(id, {dn−1
0 a})f(dna) ∈ D({dn−2

1 dna ◦ dn−1
0 a})

with {dn−2
1 dna ◦ dn−1

0 a} = {d2d
n−2
1 a ◦ d0d

n−2
1 a} = {dn−1

1 a}

In the case n = 1 it is clear that ∂f(a) ∈ D({a}), because a ∈ X1, which implies f(d0a) ∈
D({idd0a}) and f(d1a) ∈ D({idd1a}), so D({a}, id)f(d0a) and D(id, {a})f(d1a) are in D({a}).

Lemma 3.1.5. The coboundary ∂, satisfies the cochain complex condition, ∂2 = 0.

Proof. For f ∈ Fn−2(X,D) and a ∈ Xn:

(∂2f)(a) =D({dn−1
2 a}, id)(∂f)(d0a) +

n−1∑
i=1

(−1)i(∂f)(dia) + (−1)nD(id, {dn−1
0 a})(∂f)(dna) =

=D({dn−1
2 a}, id)

(
D({dn−2

2 d0a}, id)f(d2
0a)︸ ︷︷ ︸

(1)

+
n−2∑
i=1

(−1)if(did0a)︸ ︷︷ ︸
(2)

+ (−1)n−1D(id, {dn−1
0 a})f(dn−1d0a)︸ ︷︷ ︸
(3)

)
+

n−1∑
i=1

(−1)i

(
D({dn−2

2 dia}, id)f(d0dia)︸ ︷︷ ︸
(4)

+
n−2∑
j=1

(−1)jf(djdia)︸ ︷︷ ︸
(5)

+ (−1)n−1D(id, {dn−2
0 dia})f(dn−1dia)︸ ︷︷ ︸
(6)

)

+ (−1)nD(id, {dn−1
0 a})

(
D({dn−2

2 dna}, id)f(d0dna)︸ ︷︷ ︸
(7)

+
n−2∑
i=1

(−1)if(didna)︸ ︷︷ ︸
(8)

+ (−1)n−1D(id, {dn−2
0 dna})f(dn−1dna)︸ ︷︷ ︸
(9)

)

From this point everything cancels out using the simplicial identities, the relations of the
fundamental category and the composition of the maps D(−,−). First of all dn−2

2 dn = dn−1
2

and dn−1d0 = d0dn, so (3) and (7) directly cancel out. Then, looking at (1), we can use that:

{dn−1
2 a ◦ dn−2

2 d0a} = {d2d
n−2
3 a ◦ d0d

n−2
3 a} = {d1d

n−2
3 a} = {dn−2

2 d1a},
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which, recalling d0d1 = d2
0, makes it coincide with the case i = 1 from (4) (except the sign),

cancelling out. The rest of the i’s from (4) can be cancelled out with the summation (2): to do
so we use dn−2

2 di = dn−1
2 (for any 2 ≤ i ≤ n − 1) and taking the term i = k from (2) and the

term i = k + 1 from (4) we have dkd0 = d0dk+1 for 1 ≤ k ≤ n− 2.

The term (5) cancels out with itself. Using the first simplicial identity we have that the cases
j = 1, i = 2 and j = 1, i = 1 cancel each other out. The same can be said for j = 1, i = 3 and
j = 2, i = 1 and, more generally, for j = 1, i = k and j = k − 1, i = 1, where 2 ≤ k ≤ n− 1. We
can repeat the same argument for j = 2, i = k and j = k− 1, i = 2, 3 ≤ k ≤ n− 1. Analogously,
we can generalize this to j = l, i = k and j = k − 1, i = l, which cancel each other out for
1 ≤ l ≤ n− 2 and l + 1 ≤ k ≤ n− 1.

The rest of the terms are (6), (8) and (9), and they can be done in the same way we have
done (1), (2) and (4). First, we can cancel out (9) and the case i = n− 1 from (6), to do so we
use:

{dn−2
0 dna ◦ dn−1

0 a} = {d2d
n−2
0 a ◦ d0d

n−2
0 a} = {d1d

n−2
0 a} = {dn−2

0 dna}.

Lastly, we can cancel out the cases i = k from (6) with the cases i = k from (8) for 1 ≤ k ≤ n−2,
taking into account dn−2

0 dk = dn−1
0 and dkdn = dn−1dk when k ≤ n− 2.

Now we want to check that our cochain complex extends the one developed by Baues and
Wirsching, explained in Definition 2.6.1.

Proposition 3.1.6. Given a small category C and a natural system D : FC→ Ab, which we
can also consider as D : Fτ1NC→ Ab, we have:

F •(NC, D) = F •BW (C, D).

Proof. As we know, τ1NC = C, which means we do not need to consider the equivalence classes
associated to the morphisms of the fundamental category.

For any n > 0, Fn(NC, D) is the abelian group of maps:

f : NnC −→
⊔

g∈Mor(τ1NC)

D(g), satisfying f(a) ∈ D(dn−1
1 a).

Using that a ∈ Nn(C), we can write a = (a1, . . . , an) and therefore dn−1
1 a = a1 ◦ · · · ◦ an:

f : NnC −→
⊔

g∈Mor(C)

D(g), satisfying f(a1, . . . , an) ∈ D(a1 ◦ · · · ◦ an),

which is exactly the definition of the elements of FnBW (C, D).

For the case n = 0, F 0(NC, D) is the abelian group of maps:

f : N0C −→
⊔

a∈Obj(τ1NC)

D(ida), satisfying f(a) ∈ D(ida),

which, taking into account τ1NC = C, coincides with the definition of F 0
BW (C, D).
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We now need to check that the coboundaries are equal. For the case n > 1 that means
comparing (2.6.2) and (3.1.2). The definition of the coboundary of Fn(NC, D) without equivalence
classes is:

∂f(a) = D(dn−1
2 a, id)f(d0a) +

n−1∑
i=1

(−1)if(dia) + (−1)nD(id, dn−1
0 a)f(dna).

We can write more explicitly the faces of a = (a1, . . . , an) using the identities (2.3.2) and
(2.3.3):

∂f(a) =D(a1, id)f(a2, . . . , an) +
n−1∑
i=1

(−1)if(a1, . . . , aiai+1, . . . , an)

+ (−1)nD(id, an)f(a1, . . . , an−1),

which is the same definition given for ∂BW .

For the case n = 1, working with (3.1.3) and removing equivalence classes we get:

∂f(a) = D(a, id)f(d0a)−D(id, a)f(d1a),

for a : d0a→ d1a, meaning ∂ coincides with the ∂BW defined in (2.6.3).

With this proposition proven, we can denote both the Baues-Wirsching’s cochain complex
and the cochain complex defined in Definition 3.1.1 by F •(−,−).

We claim that cochains define a functor Fn : Nat → Ab. We know how it behaves on
objects, let us see it on morphisms and then prove its functoriality. For that, we recall that any
morphism (λ, µ) : (X,D) → (X ′, D′) in Nat can be decomposed as (λ, µ) = (id, µ)(λ, id). We
are going to study these morphisms separately:

Lemma 3.1.7. A morphism (λ, id) : (X,D)→ (X ′, (τ1λ)∗D) induces a homomorphism:

Fn(λ, id) := λ∗ : Fn(X,D) −→ Fn(X ′, (τ1λ)∗D),

defined for f ∈ Fn(X,D) and a ∈ X ′n by precomposition with λ:

λ∗f(a) = f(λ(a)).

Proof. We have to check that λ∗f ∈ Fn(X ′, (τ1λ)∗D), which means checking if λ∗f(a) ∈
(τ1λ)∗D({dn−1

1 a}). We know f ∈ Fn(X,D), so:

λ∗f(a) = f(λ(a)) ∈ D({dn−1
1 λ(a)}).

Using the fact that λ is a simplicial map, the definition of the fundamental category functor and
the construction in (2.5.3), we get:

D({dn−1
1 λ(a)}) = D({λ(dn−1

1 a)}) = D((τ1λ)({dn−1
1 a})) = (τ1λ)∗D({dn−1

1 a}).

Now, we have to prove the compatibility with the coboundary, i.e. ∂λ∗ = λ∗∂. Given
f ∈ Fn−1(X,D) and a ∈ X ′n and using the fact that λ is a simplicial map, we have:

λ∗(∂f)(a) =(∂f)(λa) = D({dn−1
2 λa}, id)f(d0λa) +

n−1∑
i=1

(−1)if(diλa) + (−1)nD(id, {dn−1
0 λa})f(dnλa) =

=D({λdn−1
2 a}, id)f(λd0a) +

n−1∑
i=1

(−1)if(λdia) + (−1)nD(id, {λdn−1
0 a})f(λdna).
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Focusing on the first term and using the definitions of λ∗f , τ1λ and (τ1λ)∗D we have:

D({λdn−1
2 a}, id)f(λd0a) = D((τ1λ)({dn−1

2 a}), id)f(λd0a) = (τ1λ)∗D({dn−1
2 a}, id)(λ∗f)(d0a).

Then, doing analogous calculations for each term in the sum, we arrive at:

λ∗(∂f)(a) =(τ1λ)∗D({dn−1
2 a}, id)(λ∗f)(d0a) +

n−1∑
i=1

(−1)i(λ∗f)(dia)

+ (−1)n(τ1λ)∗D(id, {dn−1
0 a})(λ∗f)(dna) = ∂(λ∗f)(a).

Lemma 3.1.8. A morphism (id, µ) : (X,D)→ (X,D′) induces a homomorphism:

Fn(id, µ) := µ∗ : Fn(X,D) −→ Fn(X,D′),

defined for f ∈ Fn(X,D) and a ∈ Xn by postcomposition with µ:

µ∗f(a) = µ(f(a)).

Proof. We have to check that µ∗f ∈ Fn(X,D′), i.e. µ∗f(a) ∈ D′({dn−1
1 a}). We have f(a) ∈

D({dn−1
1 a}) and µ : D → D′, so:

µ∗f(a) = µ(f(a)) ∈ D′({dn−1
1 a}).

Now, we have to prove the compatibility with the coboundary, i.e. ∂µ∗ = µ∗∂. Given
f ∈ Fn−1(X,D) and a ∈ Xn and using the fact that λ is a simplicial map, we have:

∂(µ∗f)(a) =D′({dn−1
2 a}, id)(µ∗f)(d0a) +

n−1∑
i=1

(−1)i(µ∗f)(dia) + (−1)nD′(id, {dn−1
0 a})(µ∗f)(dna) =

=D′({dn−1
2 a}, id)µ(f(d0a)) +

n−1∑
i=1

(−1)iµ(f(dia)) + (−1)nD′(id, {dn−1
0 a})µ(f(dna)).

From there we can use the fact that µ : D → D′ is a natural transformation, which implies
D′(−,−)µ = µD(−,−), giving us:

∂(µ∗f)(a) =µD({dn−1
2 a}, id)(f(d0a)) +

n−1∑
i=1

(−1)iµ(f(dia)) + (−1)nµD(id, {dn−1
0 a})(f(dna)) =

=µ

(
D({dn−1

2 a}, id)f(d0a) +

n−1∑
i=1

(−1)if(dia) + (−1)nD(id, {dn−1
0 a})f(dna)

)
=

=µ(∂f(a)) = µ∗∂f(a).

Proposition 3.1.9. The cochains define a functor Fn : Nat→ Ab. Any morphism (λ, µ) : (X,D)→
(X ′, D′) induces the following homomorphism on cochains:

Fn(λ, µ) := µ∗λ
∗ : Fn(X,D) −→ Fn(X ′, D′).
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Proof. It is straightforward to see that Fn(id, id) = idFn(X,D). In the case of compositions, given
(λ, µ) : (X,D)→ (X ′, D′) and (λ′, µ′) : (X ′, D′)→ (X ′′, D′′) we have:

Fn((λ′, µ′)(λ, µ)) = Fn(λλ′, µ′ ◦ (τ1λ
′)∗µ) = µ′∗((τ1λ

′)∗µ)∗λ
′∗λ∗.

But we can write ((τ1λ
′)∗µ)∗λ

′∗ = λ′∗µ∗, because for f ∈ Fn(X ′, (τ1λ)∗D) and a ∈ X ′n:

λ′∗µ∗f(a) = ((τ1λ
′)∗µ)∗f(λ′(a)) = ((τ1λ

′)∗µ)∗λ
′∗f(a),

and that gives us:

Fn((λ′, µ′)(λ, µ)) = µ′∗λ
′∗µ∗λ

∗ = Fn(λ′, µ′)Fn(λ, µ).

Having studied these basic properties of our cochains, we can now define our cohomology:

Definition 3.1.10. The cohomology of a simplicial set X with coefficients on a natural system
D on τ1X, Hn(X,D), is the cohomology of the cochain complex Fn(X,D) with the coboundary
∂. Therefore, the cohomology defines functors Hn : Nat→ Ab.

3.2 Simplicial properties of the cohomology

We explore further properties of our cohomology by studying its relation with a generalization
of Eilenberg-MacLane spaces. The theorems in this section follow closely [4, §17], with some
important changes to adapt them to our situation.

Definition 3.2.1. Fixing n ≥ 0 we define the simplicial set L•(D,n) with:

Lq(D,n) = {(a, b) | a ∈ Nqτ1X, b ∈ Fn([q], a∗D)} .

In the second component, we are considering [q] as a category and taking a ∈ Nqτ1X as a functor
a : [q]→ τ1X, so a∗D makes sense as a natural system on [q].

We define the face and degeneracy maps of this simplicial set as:

di : Lq(D,n) −→ Lq−1(D,n),
(a, b) 7−→ di(a, b) = (dia, (d

i)∗b),

si : Lq−1(D,n) −→ Lq(D,n),
(a, b) 7−→ si(a, b) = (sia, (s

i)∗b).

With di : [q−1]→ [q] and si : [q]→ [q−1] as defined in (2.2.2), but thinking of them as functors.
In the case of the coface map, it induces di : Nn([q − 1]) → Nn([q]), which in turn by Lemma
3.1.7 induces:

(di)∗ : Fn([q], a∗D) −→ Fn([q − 1], (di)∗a∗D).

This face map is well-defined because we know that (di)∗a∗D = (adi)∗D = (dia)∗D by the
definition of face map of the nerve, which makes Fn([q− 1], (di)∗a∗D) = Fn([q− 1], (dia)∗D) as
desired. The degeneracies work analogously.

Considering the simplicial set as a functor, L(D,n) : ∆op → Set, any simplicial map α : [q]→
[m] induces:

L(D,n)(α) : Lm(D,n) −→ Lq(D,n),
(a, b) 7−→ L(D,n)(α) (a, b) = (Nτ1X(α) a, α∗b).

(3.2.2)
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This simplicial set comes equipped with a projection map onto the first component:

p : L(D,n) −→ Nτ1X,
(a, b) 7−→ a.

Definition 3.2.3. We want to consider the set of simplicial maps between X and L(D,n) which
make the following triangle commute:

X L(D,n),

Nτ1X

Ψ p

with Ψ as defined in (2.3.8) and p being the projection onto the first component.

This set will be denoted by homNτ1X(X,L(D,n)) and any element g can be described as:

g : Xq −→ Lq(D,n),
a 7−→ g(a) = (Ψ(a), g(a)2).

This set carries an abelian group structure defined as follows, for g, h ∈ homNτ1X(X,L(D,n)):

(g + h)(a) = (Ψ(a), g(a)2 + h(a)2).

Having defined this abelian group, our next goal is to find an isomorphism:

homNτ1X(X,L(D,n)) Fn(X,D).
φ

ϕ

Lemma 3.2.4. We define the morphism φ : homNτ1X(X,L(D,n))→ Fn(X,D) as follows, given
g ∈ homNτ1X(X,L(D,n)) and a ∈ Xn:

φ(g)(a) = g(a)2(id[n]),

where id[n] ∈ Nn([n]) and (g(a))2 ∈ Fn([n], (Ψ(a))∗D).

Proof. We should check if it is correctly defined. That means proving φ(g) is an n-cochain, i.e.
it satisfies φ(g)(a) ∈ D({dn−1

1 a}):

φ(g)(a) = g(a)2(id[n]) ∈ (Ψ(a))∗D(dn−1
1 id[n]).

This natural system makes sense as Ψ(a) ∈ Nnτ1X, thus Ψ(a) : [n] → τ1X. This means
(Ψ(a))∗D(dn−1

1 id[n]) = D(Ψ(adn−1
1 id[n])) and from this point we can use the fact that a is

a simplicial map and we get:

D(Ψ(adn−1
1 id[n])) = D(Ψ(dn−1a(id[n]))) = D(Ψ(dn−1

1 a)).

Then, considering Ψ as a functor and using the fact that dn−1
1 a ∈ X1, we have:

D(Ψ(dn−1
1 a)) = D({dn−1

1 a})

as desired.
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Lemma 3.2.5. We define the morphism ϕ : Fn(X,D)→ homNτ1X(X,L(D,n)), for f ∈ Fn(X,D)
and a ∈ Xq, as:

ϕ(f)(a) = (Ψ(a), a∗f),

where a : N([q])→ X induces a∗ : Fn(X,D)→ Fn([q], (τ1(a))∗D).

Proof. First, we need to prove that Fn([q], (τ1a)∗D) is equal to Fn([q], (Ψ(a))∗D). Given v ∈
Nn[q], we have:

a∗f(v) = f(a(v)) ∈ D({dn−1
1 a(v)}) = D({a(dn−1

1 v)}),

and, as a(dn−1
1 v) ∈ X1, we can use the fact that Ψ restricted to X1, Ψ: X1 → N1τ1X =

Mor(τ1X), sends each 1-simplex to its equivalence class, the same that τ1 does.

(Ψ(a)) ∗D({dn−1
1 v}) = D({a(dn−1

1 v)}) = (τ1a)∗D({dn−1
1 v}).

We also need to check that ϕ(f) is a simplicial map. We will only check it for faces, as
degeneracies are analogous:

di(ϕ(f)(a)) = di(Ψ(a), a∗f) = (diΨ(a), (di)∗a∗f) =

= (Ψ(dia), (adi)
∗f) = (Ψ(dia), (dia)∗f) = ϕ(f)(dia).

With these morphisms defined and verified, we now turn to proving that they constitute an
isomorphism.

Theorem 3.2.6. ϕ and φ are isomorphisms and inverses to each other.

Proof. We will prove that both φϕ and ϕφ are identities.

First, for f ∈ Fn(X,D) and a ∈ Xn:

(φϕ)(f)(a) = φ(ϕ(f))(a) = ϕ(f)(a)2(id[n]) = a∗f(id[n]) = f(a(id[n])) = f(a).

Conversely, for g ∈ homNτ1X(X,L(D,n)) and a ∈ Xq:

(ϕφ)(g)(a) = ϕ(φ(g))(a) = (Ψ(a), a∗(φ(g))).

To prove that ϕφ = id, the only thing left to be checked is that a∗(φ(g)) = g(a)2, so we will
study only the second component.

Taking α ∈ Nn([q]), we can consider α : [n]→ [q]. With that, and knowing that both a and
g are simplicial maps, we get:

a∗(φ(g))(α) = φ(g)(a(α)) = g(a(α))2(id[n]) = g(X(α)a)2(id[n]) =

= (L(D,n)(α) g(a))2(id[n]) = α∗(g(a))2(id[n]) = g(a)2(α id[n]) = g(a)2(α),

where we are considering the simplicial sets X and L(D,n) as functors and using the definition
of L(D,n) on morphisms as in (3.2.2).

Now, we want to restrict this isomorphism to cocycles:
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Definition 3.2.7. Fixing n ≥ 0 we define the simplicial setK•(D,n) as the following subsimplicial
set of L(D,n):

Kq(D,n) = {(a, b) | a ∈ Nqτ1X, b ∈ Zn([q], a∗D)},

which is correctly defined because for (a, b) ∈ Kq(D,n), (di)∗b and (si)∗b are also cocycles due
to the functoriality of Fn(−,−) with respect to ∂.

Theorem 3.2.8. The restrictions of ϕ and φ define an isomorphism:

homNτ1X(X,K(D,n)) Zn(X,D).
φ

ϕ

Proof. Taking f ∈ Zn(X,D) we want to check that for any a ∈ Xq, ϕ(f)(a) ∈ Kq(D,n), which
means we need to study the second component to see if it is a cocycle:

∂(ϕ(f)(a))2 = ∂a∗(f) = a∗(∂(f)) = a∗(0) = 0,

where we have used the definition of ϕ, the functoriality of a∗ and the fact that f is a cocycle.
Conversely, given ϕ(f) ∈ homNτ1X(X,K(D,n)), we want to check f ∈ Zn(X,D). Taking

a ∈ Xn+1, we can think of it as a map a : Nn+1 → X with a(id[n+1], so we have:

∂f(a) = ∂f(a(id[n+1])) = ∂(a∗f)(id[n+1]) = ∂(ϕ(f)(a))2(id[n+1]) = 0.

3.3 Properties of L(D,n)

We prove that both L(D,n) and K(D,n) are quasicategories. This result could be used to
prove the invariance by quasiequivalences of the cohomology.

The first result below is from [3, Lemma 0032] and the second one is adapted from [5, Section
08NT].

Lemma 3.3.1. The nerve of a category, NC, is a quasicategory. Moreover, each inner horn
admits a unique filler morphism:

Λi[n] NC

∆[n]

∃ !
for 0 < i < n.

Theorem 3.3.2. L(D,n) is a quasicategory.

Proof. For some 0 < k < q, a map σ from Λk[q] is defined by the images of the (q− 1)-simplices
di id[q] for i = 0, . . . , k̂, . . . q. We will denote their images by:

σ : Λk[q] −→ L(D,n),
di id[q] 7−→ (ui, vi) ∈ Lq−1(D,n),

which satisfy the relations of the simplices of the horn, namely di(uj , vj) = diσ(dj id[q]) =
dj−1σ(di id[q]) = dj−1(ui, vi) for i < j and i, j 6= k.

https://kerodon.net/tag/0032
https://stacks.math.columbia.edu/tag/08NT
https://stacks.math.columbia.edu/tag/08NT
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To prove this theorem we need to find a q-simplex (u, v) ∈ Lq(D,n) such that di(u, v) =

(ui, vi) for each i = 0, . . . , k̂, . . . q.

The component u ∈ Nqτ1X of (u, v) can be defined by Lemma 3.3.1 and satisfies diu = ui.
So the only thing missing is finding a cochain v ∈ Fn([q], u∗D) such that (di)∗v = vi for all
i 6= k. We will construct this cochain in two steps.

The first step is to define c ∈ Fn([q], u∗D) satisfying (di)∗c = vi for all i < k. We will do so
by induction on r, 0 ≤ r < k, to define a cr ∈ Fn([q], u∗D) such that (di)∗cr = vi for i ≤ r.

To define the initial case, c0 ∈ Fn([q], u∗D), we are going to study the cochain (s0)∗v0 ∈
Fn([q], (s0u0)∗D) = Fn([q], (s0d0u)∗D). Taking τ ∈ Nn[q], we have:

c0(τ) ∈u∗D(dn−1
1 τ) = D({udn−1

1 τ}) = D({uτ(d1)n−1}),
(s0)∗v0(τ) ∈(s0d0u)∗D(dn−1

1 τ) = D{s0d0ud
n−1
1 τ}) = D({ud0s0τ(d1)n−1}).

We want to study when those two abelian groups are the same, for that we need to study and
compare τ(d1)n−1 and d0s0τ(d1)n−1. As τ ∈ Nn[q], it can be viewed as morphism τ : [n] → [q],
thus:

[1] [n] [q],
(d1)n−1

τ

[1] [n] [q] [q − 1] [q].
(d1)n−1

τ s0 d0

The category [1] is the category with two objects and one morphism between them, so in
both cases we are mapping that morphism, 1 ≥ 0, to a morphism in [q]. Taking into account the
definitions of the cofaces and codegeneracies we have (d1)n−1(0) = 0, (d1)n−1(1) = n, d0s0(0) = 1
and d0s0(l) = l for any l > 0. This means that the source (image of 1) and target (image of 0)
of the morphisms in [q] are:

τ(d1)n−1(1) = τ(n),

τ(d1)n−1(0) = τ(0),

d0s0τ(d1)n−1(1) =

{
1 if τ(n) = 0,
τ(n) if τ(n) > 0,

d0s0τ(d1)n−1(0) =

{
1 if τ(0) = 0,
τ(0) if τ(0) > 0.

Thus, the images of the morphism 1 ≥ 0 are u(d1)n−1(1 ≥ 0) = τ(n) ≥ τ(0) and d0s0τ(d1)n−1(1 ≥
0) = max{τ(n), 1} ≥ max{τ(0), 1}.

With all of this explained we can define c0 ∈ Fn([q], u∗D) with τ ∈ Nn[q]:

c0(τ) =


0 if τ(n) = 0,
(s0)∗v0(τ) if τ(n) > 0, τ(0) > 0,
D(u(1 ≥ 0), id)((s0)∗v0(τ)) if τ(n) > 0, τ(0) = 0.
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In any of the three cases, c0 satisfies the cochain condition. The first case is obvious. For
the second one we need to use the previous explanation:

(s0)∗v0(τ) ∈ D({ud0s0τ(d1)n−1}) = D({u(τ(n) ≥ τ(0))}) = D({uτ(d1)n−1}).

Finally, in the third one we have:

(s0)∗v0(τ) ∈ D({ud0s0τ(d1)n−1}) = D({u(τ(n) ≥ 1)}),

then applying the map D(u(1 ≥ 0), id) : D({u(τ(n) ≥ 1)}) → D({u(1 ≥ 0) ◦ u(τ(n) ≥ 1)}) =
D({u(τ(n) ≥ 0)}) we get what we wanted.

Now, we want to prove that (d0)∗c0 = v0. Taking τ ∈ Nn[q − 1]:

(d0)∗c0(τ) = c0(d0τ),

and using the definition of d0(j) = j+ 1 for all 0 ≤ j ≤ q− 1, we know that (d0τ)(0) > 0, which
means we are in the second case of the definition of c0, so:

c0(d0τ) = ((s0)∗v0)(d0τ) = v0(s0d0τ) = v0(τ).

Now, for the inductive step, we suppose there exists a cr as desired for each r < k − 1, and
we define a cochain yr ∈ Fn([q], u∗D) such that cr+1 = cr + yr satisfies (di)∗(cr + yr) = vi for
all i ≤ r + 1.

Analogously to the construction of c0, before we define yr we need to study the cochain:

(y′)r = (sr+1)∗(vr+1 − (dr+1)∗cr).

By hypothesis cr ∈ Fn([q], u∗D), thus (dr+1)∗cr ∈ Fn([q − 1], (dr+1u)∗D) = Fn([q − 1], u∗r+1D),
which means (y′)r ∈ Fn([q], (sr+1dr+1u)∗D).

Taking τ ∈ Nn[q], we compare yr and (y′)r:

yr(τ) ∈u∗D(dn−1
1 τ) = D({udn−1

1 τ}) = D({u(τ(n) ≥ τ(0))}),
(y′)r(τ) ∈(sr+1dr+1u)∗D(dn−1

1 τ) = D{sr+1dr+1ud
n−1
1 τ}) = D({udr+1sr+1(τ(n) ≥ τ(0))}).

Using the definition of the cochains and codegeneracies we know:

dr+1sr+1(j) =


j if j < r + 1,
r + 2 if j = r + 1,
j if j > r + 1,

which means:

dr+1sr+1(τ(n) ≥ τ(0)) =


idr+1 if τ(n) = τ(0) = r + 1,
τ(n) ≥ τ(0) if τ(n) 6= r + 1, τ(0) 6= r + 1,
r + 2 ≥ τ(0) if τ(n) = r + 1, τ(0) < r + 1,
τ(n) ≥ r + 2 if τ(n) > r + 1, τ(0) = r + 1.

Now, we can define yr ∈ Fn([q], u∗D) for any τ ∈ Nn[q]:

yr(τ) =


0 if τ(n) = r + 1,
(y′)r if τ(n) 6= r + 1, τ(0) 6= r + 1,
D(u(r + 2 ≥ r + 1), id)(y′)r if τ(n) > r + 1, τ(0) = r + 1.
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This cochain is compatible with the natural system. In the first two cases it is straightforward,
and in the third one we have the morphism:

D(u(r + 2 ≥ r + 1), id) : D({u(τ(n) ≥ r + 2)}) −→ D({u(r + 2 ≥ r + 1) ◦ u(τ(n) ≥ r + 2)}),

with u(r + 2 ≥ r + 1) ◦ u(τ(n) ≥ r + 2) = u(τ(n) ≥ r + 1) = u(τ(n) ≥ τ(0).

Before defining cr+1, we also want to check the faces of yr. Taking τ ∈ Nn[q − 1] and for
i ≤ r we have (di)∗yr(τ) = yr(diτ), so we will need to distinguish between the distinct cases of
diτ :

• Case 1: if (diτ)(n) = r + 1:
yr(diτ) = 0.

• Case 2: if (diτ)(n) 6= r + 1 and (diτ)(0) 6= r + 1:

yr(diτ) =(y′)r(diτ) = (sr+1)∗(vr+1 − (dr+1)∗cr)(diτ) =

=(di)∗(sr+1)∗(vr+1 − (dr+1)∗cr)(τ) = (sr)∗(di)∗(vr+1 − (dr+1)∗cr)(τ) =

=(sr)∗((di)∗vr+1 − (di)∗(dr+1)∗cr) = (sr)∗((di)∗vr+1 − (dr)∗(di)∗cr)(τ) =

=(sr)∗((di)∗vr+1 − (dr)∗vi)(τ) = 0,

in the last equality we have used the fact that di(uj , vj) = dj−1(ui, vi) for i < j.

• Case 3: if (diτ)(n) > r + 1 and (diτ)(0) = r + 1:

yr(diτ) =((di)∗D)(u(r + 2 ≥ r + 1), id)(y′)r(diτ) = (di)∗
(
D(u(r + 2 ≥ r + 1), id)(y′)r

)
(τ) =

=
(
(di)∗D)(u(r + 2 ≥ r + 1), id)

)
(di)∗(y′)r(τ) = 0.

In this calculation we have used that the natural system of (di)∗yr ∈ Fn([q−1], (diu)∗D) is
precisely (di)∗u∗D and in the last equality we have applied case 2, which proved (di)∗(y′)r =
0.

The three cases give us (di)∗yr = 0 for i ≤ r.

Given τ ∈ Nn[q−1], the case i = r+1 is (dr+1)∗yr(τ) = yr(dr+1τ) and we know dr+1(j) 6= r+1
for all 0 ≤ j ≤ q − 1, which means we are in the second case of yr:

yr(dr+1τ) = (y′)r(dr+1τ) = (dr+1)∗(sr+1)∗(vr+1 − (dr+1)∗cr)(τ) = (vr+1 − (dr+1)∗cr)(τ).

We use yr to define cr+1 = cr + yr, satisfying the condition we asked for:

(di)∗cr+1 = (di)∗cr + (di)∗yr = vi + 0 = vi, for i ≤ r,
(dr+1)∗cr+1 = (dr+1)∗cr + (dr+1)∗yr = (dr+1)∗cr + vr+1 − (dr+1)∗cr = vr+1.

We can define c := ck−1 and the first step is completed.

The second step is again by induction on r, 0 ≤ r ≤ n− k, to define br ∈ Fn([q], u∗D) such
that (di)∗br = vi for i < k and i > n− r.
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For r = 0, we define b0 = c, which clearly satisfies the condition. Then, assuming the case
r ≤ n − k − 1, we need to define xr ∈ Fn([q], u∗D) such that we can define cr+1 = cr + xr

satisfying the desired condition. However, before defining xr we need to study another cochain:

(x′)r = (sn−r−1)∗(vn−r − (dn−r)∗br) ∈ Fn([q], (sn−r−1dn−ru)∗D).

Taking τ ∈ Nn[q] and comparing xr and (x′)r:

xr(τ) ∈u∗D(dn−1
1 τ) = D({udn−1

1 τ}) = D({u(τ(n) ≥ τ(0))}),
(x′)r(τ) ∈(sn−r−1dn−ru)∗D(dn−1

1 τ) = D{sn−r−1dn−rud
n−1
1 τ}) = D({udn−rsn−r−1(τ(n) ≥ τ(0))}).

Developing the last morphism:

dn−rsn−r−1(j) =


j if j < n− r,
n− r − 1 if j = n− r,
j if j > n− r,

dn−rsn−r−1(τ(n) ≥ τ(0)) =


idn−r−1 if τ(n) = τ(0) = n− r,
τ(n) ≥ τ(0) if τ(n) 6= n− r, τ(0) 6= n− r,
n− r − 1 ≥ τ(0) if τ(n) = n− r, τ(0) < n− r,
τ(n) ≥ n− r − 1 if τ(n) > n− r, τ(0) = n− r.

With this we can define xr ∈ Fn([q], u∗D) for any τ ∈ Nn[q]:

xr(τ) =


0 if τ(0) = n− r,
(x′)r if τ(n) 6= n− r, τ(0) 6= n− r,
D(id, u(n− r ≥ n− r − 1))(x′)r if τ(n) = n− r, τ(0) < n− r,

which satisfies xr ∈ Fn([q], u∗D) for all three cases. The first two are straightforward and the
third one is a consequence of the morphism:

D(id, u(n−r ≥ n−r−1)) : D({u(n−r−1 ≥ τ(0))}) −→ D({u(n−r−1 ≥ τ(0))◦u(n−r ≥ n−r−1)}).

Now we are going to study the faces of xr. Given τ ∈ Nn[q − 1], we begin by studying the
faces for i < k:

• Case 1: if (diτ)(n) = n− r:
xr(diτ) = 0.

• Case 2: if (diτ)(n) 6= n− r and (diτ)(0) 6= n− r:

xr(diτ) =(x′)r(diτ) = (di)∗(sn−r−1)∗(vn−r − (dn−r)∗br)(τ) =

=(sn−r−2)∗((di)∗vn−r − (di)∗(dn−r)∗br)(τ) =

=(sn−r−2)∗((di)∗vn−r − (dn−r−1)∗(di)∗br)(τ) =

=(sn−r−2)∗((di)∗vn−r − (dn−r−1)∗vi)(τ) = 0,

in the last equality we have used the fact that di(uj , vj) = dj−1(ui, vi) for i < j.

• Case 3: if (diτ)(n) = n− r and (diτ)(0) < r + 1:

xr(diτ) =((di)∗D)(id, u(n− r ≥ n− r − 1))(x′)r(diτ) = (di)∗
(
D(id, u(n− r ≥ n− r − 1))(x′)r

)
(τ) =

=
(
(di)∗D)(id, u(n− r ≥ n− r − 1))

)
(di)∗(x′)r(τ) = 0.

In this calculation we have used that the natural system of (di)∗xr ∈ Fn([q−1], (diu)∗D) is
precisely (di)∗u∗D and in the last equality we have applied case 2, which proved (di)∗(x′)r =
0.
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The faces for i > n− r are:

• Case 1: if (diτ)(n) = n− r:
xr(diτ) = 0.

• Case 2: if (diτ)(n) 6= n− r and (diτ)(0) 6= n− r:

xr(diτ) =(x′)r(diτ) = (di)∗(sn−r−1)∗(vn−r − (dn−r)∗br)(τ) =

=(sn−r−1)∗((di−1)∗vn−r − (di−1)∗(dn−r)∗br)(τ) =

=(sn−r−1)∗((di−1)∗vn−r − (dn−r)∗(di)∗br)(τ) =

=(sn−r−1)∗((di−1)∗vn−r − (dn−r)∗vi)(τ) = 0,

in the last equality we have used the fact that di(uj , vj) = dj−1(ui, vi) for i < j.

• Case 3: if (diτ)(n) = n− r and (diτ)(0) < r + 1:

xr(diτ) = 0.

This case is analogous to the previous case 3.

The last face we need to check is i = n−r, in which case dn−r(j) 6= n−r for all 0 ≤ j ≤ q−1,
so we are in the second case of xr:

xr(dn−rτ) = (x′)r(dn−rτ) = (dn−r)∗(sn−r−1)∗(vn−r − (dn−r)∗br)(τ) = (vn−r − (dn−r)∗br)(τ).

Summarizing, the faces of xr are:

(di)∗xr =0, for i < k and i > n− r,
(dn−r)∗xr =vn−r − (dn−r)∗br.

With xr we define br+1 = br + xr, satisfying:

(di)∗br+1 = (di)∗br + (di)∗xr = vi + 0 = vi, for i < k and i > n− r,
(dn−r)∗br+1 = (dn−r)∗br + (dn−r)∗xr = (dn−r)∗br + vn−r − (dn−r)∗br = vn−r.

Finally, we can define v := bn−k and we have v as desired:

(u, v) ∈ Kq(D,n) with di(u, v) = (ui, vi) for i 6= k.

This proof could have been identically done with K(D,n) instead of L(D,n), as all the facts
we have used about L(D,n) are shared by K(D,n).

Theorem 3.3.3. K(D,n) is a quasicategory.
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3.4 Future directions

Further investigation about the theme of this memoir should probably be aimed at proving
the invariance by quasiequivalences of the cohomology defined here. This result is an almost
straightforward consequence of two theorems, one of them is Theorem 3.3.3, but we have not
been able to prove the other one. Nevertheless, in this section we present both the invariance
theorem and the needed previous result.

Defining p′ : X ×∆[1]→ X to be the projection p(x, y) = x for all x ∈ Xq and y ∈ ∆[1]q for
any q, we have:

Definition 3.4.1. Two maps f, g ∈ homNτ1X(X,K(D,n)) are said to be homotopic if there
exists H : X ×∆[1]→ K(D,n) satisfying for any x ∈ Xq:

H(x, sq0(0)) =f(x),

H(x, sq0(1)) =g(x).

And making the following square commute:

X ×∆[1] X

K(D,n) Nτ1X.

p′

H Ψ

p

Theorem 3.4.2. Given f, g ∈ homNτ1X(X,K(D,n)), they are homotopic if and only if φ(f)
and φ(g) are cohomologous.

This result is an extension to natural systems of the one present in [4, §17].

After this previous result we can give a sketch of the proof for the invariance theorem:

Theorem 3.4.3. Let f : X → Y be a quasiequivalence and D a natural system in τ1Y . Then
fn : Hn(Y,D)→ Hn(X, f∗D) is an isomorphism for all n ∈ Z.

Proof. The category of simplicial sets carries a model category structure whose weak equivalences
are the quasiequivalences, the cofibrations are the injective maps, like the usual model structure
which models classical homotopy theory, and the fibrant objects are the quasicategories. This
model structure, introduced by Joyal, is sometimes called natural, to differentiate it from the
usual model structure. The word natural refers to one of the most basic notions in category
theory: natural transformations. The original source by Joyal on the existence of this model
structure was never published and it is not available. A proof can be found in [6].

The 1-simplex is also an interval in the natural model structure on simplicial sets, hence
quasiequivalences induce contravariantly bijections between sets of homotopy classes of maps
with a quasicategory as target. All this transfers to the comma category of simplicial sets over
Nτ1Y in the usual way. Hence, this theorem would follow from Theorems 3.3.3 and 3.4.2.



Bibliography

[1] Hans-Joachim Baues and Günther Wirsching. Cohomology of small categories. Journal of
Pure and Applied Algebra, 38:187–211, 1985.

[2] Emily Riehl. Category Theory in Context. Dover Publications, 2016.

[3] Jacob Lurie. Kerodon. https://kerodon.net, 2021.

[4] J. Peter May. Simplicial Objects in Algebraic Topology. The University of Chicago Press,
1967.

[5] The Stacks project authors. The Stacks project. https://stacks.math.columbia.edu,
2021.

[6] Denis-Charles Cisinski. Higher categories and homotopical algebra, volume 180 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2019.

30

https://kerodon.net
https://stacks.math.columbia.edu

	Introduction
	Motivation
	Notation

	Preliminaries
	Category theory
	Simplicial objects
	Simplicial sets and categories
	-category theory
	Natural systems
	Baues-Wirching's cohomology

	Cohomology of -categories
	Definition and basic properties
	Simplicial properties of the cohomology
	Properties of L(D,n)
	Future directions

	Bibliography

