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Data from partially repeated-measure designs (PRMD), or 
other structurally similar designs (e.g., split-plot and variations 
of the Latin square), are usually analyzed by using univariate 
analysis of variance (ANOVA) or multivariate analysis of variance 
(MANOVA), despite being highly sensitive to deviations from the 
multisample sphericity assumption (i.e., equality of covariance 
matrices across groups and sphericity for the common covariance 
matrix) when group sizes are not reasonably balanced. From 
at the end of the 20th century until today, several analytical 

strategies have been proposed for testing hypotheses about means 
without assuming homoscedasticity, including bootstrapping and 
permutation resampling methods (Friedrich, Konietschke, & 
Pauly, 2017; Xu, 2015), generalized p-values (Weerahandi, 2004), 
and aligned ranks (Brunner, Munzel, & Puri, 2002; Kowalchuk, 
Keselman, & Algina, 2003; Oliver-Rodríguez & Wang, 2015), in 
addition to many other procedures proposed to approximate the 
degrees of freedom for the classical univariate and multivariate 
general linear models (Bathke, Schabenberger, Tobias, & Madden, 
2009; Lix, Algina, & Keselman, 2003; Vallejo & Ato, 2006).  

The degrees of freedom that will most likely result in the best 
approximation have been reported by Vallejo and Ato (2006) for the 
multivariate Brown-Forsythe (MBF) approach (see Vallejo, Moris, 
& Conejo, 2006, for a SAS/IML® implementation). Simulation 
studies carried out by Vallejo, Arnau, and Ato (2007) and Livacic-
Rojas, Vallejo, Fernández, and Tuero-Herrero (2017) in the context 
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Abstract Resumen

Background: A multivariate extension of the Brown-Forsythe (MBF) 
procedure can be used for the analysis of partially repeated measure 
designs (PRMD) when the covariance matrices are arbitrary. However, 
the MBF procedure requires complete data over time for each subject, 
which is a signifi cant limitation of this procedure. This article provides 
the rules for pooling the results obtained after applying the same MBF 
analysis to each of the imputed datasets of a PRMD. Method: Montecarlo 
methods are used to evaluate the proposed solution (MI-MBF), in terms 
of control of Type I and Type II errors. For comparative purposes, the 
MBF analysis based on the complete original dataset (OD-MBF) and the 
covariance pattern model based on an unstructured matrix (CPM-UN) were 
studied. Results: Robustness and power results showed that the MI-MBF 
method performed slightly worse than tests based on CPM-UN when the 
homogeneity assumption was met, but slightly better when that assumption 
was not met. We also note that without assuming equality of covariance 
matrices, little power was sacrifi ced by using the MI-MBF method in place 
of the OD-MBF method. Conclusions: The results of this study suggest 
that the MI-MBF method performs well and could be of practical use.

Keywords: attrition, multiple imputation, MBF procedure, covariance 
pattern model, heterogeneous covariance matrices.

Análisis de datos de medidas repetidas incompletas usando una extensión 
multivariante del enfoque de Brown-Forsythe. Antecedentes: para 
analizar diseños de medidas parcialmente repetidas (DMPR) con matrices 
de covarianza arbitrarias se puede usar una extensión multivariante del 
enfoque de Brown-Forsythe (MBF). Una importante limitación de este 
enfoque es que requiere datos completos para cada sujeto. Este artículo 
proporciona las reglas para agrupar los resultados obtenidos tras aplicar el 
análisis MBF a los diferentes conjuntos de datos imputados de un DMPR. 
Método: se aplican técnicas de Montecarlo para evaluar la solución 
propuesta (IM-MBF), en términos de control de los errores Tipo I y Tipo 
II. Con fi nes comparativos, también se evalúan los resultados obtenidos 
con el enfoque MBF basado en los datos originales (DO-MBF), así como 
con el modelo de patrones de covarianza basado en asumir una matriz no 
estructurada (MPC-NE). Resultados: cuando se cumple el supuesto de 
homogeneidad, el desempeño de la prueba IM-MBF es ligeramente inferior 
al obtenido con la prueba MPC-NE, mientras que sucede lo contrario 
cuando se incumple dicho supuesto. También encontramos que se pierde 
poca potencia usando el enfoque MI-MBF, en lugar del enfoque DO-MBF, 
cuando las matrices de covarianza son heterogéneas. Conclusiones: los 
resultados sugieren que el enfoque MI-MBF funciona bien y podría ser de 
uso práctico.

Palabras clave: abandono del estudio, imputación múltiple, enfoque 
MBF, modelo de patrón de covarianza, heterogeneidad de las matrices 
de covarianza.
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of multivariate analysis of data collected in PRMD, suggest that 
the MBF method performs very well and could be practical for 
use when sample sizes are moderate to small (i.e., the ratio of the 
smallest group size to the number of repeated measurements could 
be approximately 3 to 2, to obtain a robust MBF test). Vallejo and 
Ato (2012) arrive at this same conclusion using cross-sectional 
multivariate designs. It should be noted that the MBF procedure 
assumes complete measurements for all subjects, which represents 
an important limitation of this procedure, given that missing data 
is a relatively common problem in almost all research studies 
(Paniagua, Amor, Echeburúa, & Abad, 2017).

In many studies, however, researchers who do not have 
complete measurements on all subjects across time can use the 
MBF procedure, excluding the incomplete vectors or by using the 
multiple imputation procedure proposed by Rubin (MI; 1987). The 
fi rst strategy involves discarding any participant who has missing 
values in any of the variables selected and proceeding with the 
complete-case (CC) analysis using standard methods. If the data 
are missing completely at random (MCAR), then the results of 
the CC analysis will be unbiased, although there will often be 
less power for testing hypotheses. When data are not MCAR and/
or the proportion of cases lost is large, not only can CC analysis 
reduce the sensitivity of the tests but it can also produce biased 
results. The second strategy involves replacing the missing values 
with two or more imputed values in order to refl ect uncertainty 
about which value to impute. Rubin (1987) recommends drawing 
imputations from conditional (predictive) distribution of the 
missing data given the observed data to ensure that imputations 
are proper. In this paper, we focus on the MI method for dealing 
with monotone missing data. The framework that we will follow 
involves creating multiple complete datasets, separately for each 
treatment group, using the propensity score method available in 
SAS PROC MI (SAS Institute, 2017). There are other methods for 
imputing the missing values such as regression model which can 
be used in this particular context.

Several combining rules have been developed for obtaining MI 
inference with a variety of statistical quantities. These rules have 
been developed, for example, for pooling the point estimates of the 
parameters of interest, such as a single regression coeffi cient or the 
difference between two sample means (Rubin & Schenker, 1986), 
multivariate tests of hypotheses (Li, Raghunathan, & Rubin, 1991), 
p-values (Li, Meng, Raghunathan, & Rubin, 1991), likelihood ratio 
tests (Meng & Rubin, 1992; Shaffer, 1997) or ANOVA sums of 
squares, F-tests, and the like (Grund, Lüdtke, & Robitzsch, 2016; 
Raghunathan, 2016; Raghunathan & Dong, 2011; Van Ginkel 
& Kroonenberg, 2014). In order to facilitate the MI inference 
process, a variety of software programs, both generalist and 
specifi c, incorporate functions that combine the results of multiple 
analyses into a single multiple-imputation result. However, the 
widespread application of the MI technique poses new challenges 
for researchers, since little or no work has been done with it in 
the context of ANOVA and MANOVA models when dispersion 
matrices are heterogeneous.

Thus, our objective in this paper is twofold. Firstly, this paper 
shows the rules for pooling the results obtained after applying the 
same MBF analysis to each of the imputed datasets of a PRMD, 
when the assumption of homogeneous covariance matrices is 
not met. The paper’s second aim is to examine the operating 
characteristics of the MBF analysis based on the data completed 
by multiple imputation (referred to hereafter as MI-MBF) for 

testing interaction effects when the covariance homogeneity 
assumption is violated. In particular, we investigated if MI-MBF 
procedure to perform reasonably well in terms of controlling Type 
I error probabilities (does not claim treatment effects when none 
are present) or power (does not fail to detect effects when they 
are present). For comparative purposes, the original data analysis 
based MBF approach (OD-MBF), the complete-case analysis 
based on the MBF approach (CC-MBF), and the covariance pattern 
model adjusted by the Kenward-Roger solution and based on a 
unstructured covariance matrix (CPM-UN) were also studied. An 
advantage of the CPM-UN approach with covariance parameters 
estimated by restricted maximum likelihood (REML) estimation 
as implemented through the SAS PROC MIXED module, is 
that it can easily accommodate incomplete data (uses all of the 
available information for each case) and will tend to produce 
correct analyses provided the data are missing at random (MAR) 
and the distributional assumptions are met (Vallejo, Fernández, 
Livacic-Rojas, & Tuero-Herrero, 2011a); in addition, it has been 
found that to be generally robust under similar conditions to those 
investigated in our article (Vallejo et al., 2011a; Vallejo, Fernández, 
Livacic-Rojas, & Tuero-Herrero, 2011b).

Method

Design

To examine the operating characteristics (i.e., Type I and Type II 
error rates) of the tests described in the previous section, we carried 
out a simulation study using a completely randomized design in 
which n subjects were randomly distributed into two treatment 
groups with t equally spaced measurements from each subject. 
Here, we simulate data according to the following regression 
model for the mean response: E(y

ijk
) = β

0
 + β

1
Trt

ij
 + β

2
 Time

ik
 + β

3
 

Trt
ij
×Time

ik
, where Trt

ij
 denotes an indicator variable for subject i 

in treatment group j (i.e., 0 or 1), and Time
ik
 was coded 0 to t time 

points. The selected set of regression coeffi cients under the null 
hypothesis represents a situation in which the patterns of change 
in the mean response over time are the same in both groups and 
their mean response profi les are equal. While the selected set of 
regression coeffi cients under the alternative hypothesis represents 
a situation in which the rate of change is greater in the treatment 
group than in the control group, at the fi rst time point however 
the mean response is independent of treatment assignment. We 
selected regression coeffi cients that provided nominal powers 
of .80 for the MBF procedure when covariance matrices were 
homogeneous across groups and completely balanced design (i.e., 
equal sample sizes and complete data).

Procedure

Firstly, we defi ned the pooling rules for obtaining MI inference 
with the MBF approach. Secondly, we compared the robustness 
of the OD-MBF, CC-MBF, MI-MBF, and CPM-UN procedures 
when the homogeneity assumption was violated. Thirdly, we 
compared the power of these approaches to detect a differential 
pattern of change over time between treatment groups, under 
conditions where the tests reasonably controlled the Type I error 
rates. Comparisons of the performance of different methods for 
testing the interaction effects were made in the complete dataset 
before data absence was introduced and the time-related dropout 
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of the incomplete datasets was derived from the complete dataset. 
Preliminary simulations suggest that little would be learned beyond 
the conclusions reached using the interaction effect, commonly 
the most interesting issue for researchers (Fitzmaurice, Laird, & 
Ware, 2011; Vallejo, Fernández, Herrero, & Conejo, 2004; Vallejo, 
Ato, Fernández, & Livacic-Rojas, in press), so the performance for 
the repeated measures main effect was not examined. 

 
Study variables

The following variables were examined in the simulation 
study: 

1. Number of repeated measurements. A two-group parallel 
design containing either t = 4, 6, or 8 repeated measures per 
subject was considered. 

2. Homogeneity of covariance matrices. The relative 
performance of the procedures was studied when covariance 
structures were homogeneous and heterogeneous. In the 
latter case, the unequal group covariance matrices were in 
the ratio of 1:2. 

3. Relationship between the group sizes and unequal 
covariance matrices. Previous studies have shown that the 
relationships between the group sizes and the covariance 
matrices can have differing effects on test statistics. 
Therefore, null, positive and negative pairings of group 
sizes and covariance matrices were studied. A null pairing 
refers to the case in which the design is balanced, that is, 
the size of the element values of the covariance matrices is 
not related to the group size because all groups are of equal 
size. A positive pairing refers to the case in which the largest 
n

j
 is associated with the covariance matrix containing the 

largest element values; a negative pairing refers to the case 
in which the largest n

j
 is associated with the covariance 

matrix containing the smallest element values. The group 
sizes were respectively equal to: (a) n

1 
= 50, n

2 
= 50; (b) n

1 

= 40, n
2 
= 60; and (c) n

1 
= 60, n

2 
= 40. Thus, the value of the 

coeffi cient of sample size variation, Δ, was set equal to 0.20 
(i.e., a moderate degree of inequality).

4. Number of imputations. Here, we will focus on examining 
the performance of the MI-MBF approach after performing 
5, 10 and 20 imputations for the case in which the missing 
data pattern is monotone under MAR. Although the optimal 
number of imputations depends on the percentage of missing 
information, current practice favors carrying out between 5 
and 20 imputations in the case of having a maximum of 
20% of missing values and up to 50 imputations in the case 
of having a higher percentage of unobserved data (Kenward 
& Carpenter, 2007).

 
The method used to generate the imputations (i.e., the 

propensity score method as implemented through the SAS PROC 
MI module), the degree of heterogeneity between the covariance 
matrices (i.e., Σ

2
 = 2Σ

1
), the total sample size (i.e., n = 100), the 

shape of the distribution of the measure variable (i.e., γ
1
 = 0; γ

2
 

= 0), the missing data mechanisms (i.e., MAR) and the patterns 
of missingness (i.e., monotone) were kept constant in the study. 
According to this missingness mechanism, the data point for 
subject i was missing at time k and the subsequent times if U

ik
 

< Φ[λ
k
 + Y

i(k-1)
], where U

ik
 is a uniform random variable and Φ is 

the cumulative normal distribution function. The values of λ
k
 in 

the above mechanisms were chosen to yield time-related dropout 
rates of 0%, 10%, 19% and 27% for the four respective occasions, 
of 0%, 10%, 19%, 27%, 34% 41% for the six respective occasions, 
and of 0%, 10%, 19%, 27%, 34%, 41%, 47% and 52% for the eight 
respective occasions. 

Data analysis

Data Generation. In each treatment group, Gaussian continuous 
longitudinal data were simulated using the method of Ripley 
(1987). This procedure involves the following two steps: 

1. Generate pseudorandom observation vectors z
ij
 with E(z

ij
) 

= 0  and Cov(z
ij
) = I from a t-variate normal distribution, 

where I is the identity matrix. These vectors were obtained 
using the RANNOR function in SAS. 

2. Create complete datasets y
ij
by multiplying the vector  z

ij 

by the Cholesky decomposition L
l
, that is, y

ij
 = ß

j
 + L

l
z

ij
, 

where y
ij
  is a vector of length t for the (i, j) th subject, ß

j
 

is a p-dimensional vector containing the population fi xed 
effects, and L

l
 is a lower triangular matrix of dimension t 

satisfying Σ
l
 = L

l
L’

l
, l =1,...,4, 6, and 8. 

Five thousand replications of each condition were performed 
using a 0.05 signifi cance level. 

Rules for combining MBF results from multiple imputed 
datasets. Once the data have been multiply imputed and the 
MBF procedure has been used to analyze the completed datasets 
repeatedly, the problem lies in knowing how to combine the 
multiple values of Wilks’ Lambda test to yield a single inference. 
Fortunately, Raghunathan (2016) and Raghunathan and Dong 
(2011) have developed a theoretical framework to combine 
random variables with Snedecor’s F distribution in the context of 
ANOVA models. It is worth noting that Vallejo and Ato (2006) use 
only Wilks’ (perhaps the most widely used criterion) approach to 
MANOVA to develop the MBF test, however, nothing impedes the 
development of tests based on other popular multivariate criteria. 

Using the theory developed by Raghunathan (2016) and 
Raghunathan and Dong (2011) and relating Wilks’ Lambda 
statistic, or criterion, to the F-test, it is possible to derive the 
formulas that facilitate combining the estimates obtained in the 
analyses of each complete dataset with the MBF approach. Under 
the null hypothesis (H

0
), the pivotal statistic associated with an 

F-distribution arises considering the quotient F = (Hν
d
)/(Eν

n
), 

where H and E are two independent chi-squared random variables 
with ν

n
 and ν

d
 degrees of freedom, respectively. If we consider the 

distribution Λ = | E | / | E + H |. the relationship between Λ and 
F is

F =
1 1/s

1/s
d

n

where |H| and |E| are determinants of the hypothesis and error 
sum of squares and cross-product matrices and s = [(l2ν2

h
  – 4) / (l2 

+ ν2
h

  – 5)]1/2, with l equal to the dimension of E and vh equal to the 
degrees of freedom of H. To obtain a valid frequentist hypothesis 
test when the assumption of homogeneous covariance matrices 
is not met, Vallejo and Ato (2006) suggest approximating the 
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degrees of freedom of the H and E matrices using what is known 
as multivariate Satterthwaite’s approximation. 

As mentioned previously, after generating M (≥2) completed 
datasets and performing the same analysis on each of the imputed 
datasets, the results obtained from the analyses are combined into 
a single pooled result. In our concrete case, the Q(m)

n
 [= (1-Λ1/s)(m)ν(m)

d
] 

and Q(m)
d
 [= (Λ1/s)(m)ν(m)

n
] quantities are associated with the numerator 

and denominator of the transformation of Wilks’ lambda criterion 
to F statistic. With regard to the numerator of the F-ratio, the 
aggregation process necessary to obtain MI inference is done by 
computing the following quantities:

Qn =
1

M
(Qn

(m)
m=1
M ) 1

Un =
1
M n

(m)Qn
2(m)( )m=1

M
1

Bn =
1

M 1
Qn
(m) Qn( )m=1

M
2

where Q
–

n
 (point estimate of the parameter being studied) is the 

harmonic average of Q(m)
n
 over the M imputed datasets, U

–
n
 (within-

imputation variance) is the average of the squared Q(m)
n
 over the 

analyses from the M imputed datasets, and B
n
 (between-imputation 

variance) is the sample variance of Q(m)
n
 over the M imputed datasets 

or the uncertainty that is due to missing data. The quantities 
referring to the denominator of the F-ratio are defi ned in a similar 
way to those used to describe the numerator, namely:

Qd =
1

M
Qd
(m)( )m=1

M 1

Ud =
1
m d

(m)Qd
2(m)( )m=1

M
1

Bd =
1

M 1
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(m) Qd( )m=1

M
2

Lastly, the H
0
 of primary interest when we fi t the PRMD with a 

between-subjects factor and a within-subjects factor can be tested 
by using the multiple imputation F-statistic that follows:

FMI =
Qd

Qn

As the reference distribution for F
MI

 it is recommended to use 
an F-distribution, F

df
n
,
df

d
 with df

n
 = 2Q

–
2
n
 / T
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 degrees of freedom 

in the numerator and df
d
 = 2Q

–
2
d
 / T

d
 degrees of freedom in the 

denominator, where T
n
 = 2U

–
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n
 and T

d
 = 2U

–
d
 + (1+1/M)

B
d
 estimate the posterior variance of Q-1

n
 and Q-1

d
 given the observed 

data Y
obs

, as discussed by Rubin (1987). When M = 1, the ratio F
MI

 
and numerator and denominator degrees of freedom associated 
with the terms of the ratio (i.e., df

n
, df

d
) coincide with the quantities 

obtained using the MBF method when there are no missing data. 
To derive df

n 
 it is assumed that Q-1|

n
 | Y

obs
  is approximately 

distributed as c
n
χ2

fn
, where c

n
 is a constant and χ2

fn
 is a central chi-

square with f
n
  degrees of freedom, and c

n
 and f

n
  are determined 

by matching the fi rst two moments of Q-1|
n
 | Y

obs
 to those of c

n
χ2

fn
,   

respectively. In particular, the numerator df
n
 is obtained by solving 

simultaneously the equations:

Q
–
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 = E (c

n
χ2

fn
) = c

n
f

n

T
n
 = V (c

n
χ2

fn
) = 2c2

n
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i.e.,

dfn =
2Qn

2

2Un + 1+1/M( )Bn

 ·
The degrees of freedom for the denominator are derived in the 

same way as the numerator.
Statistical analysis of simulated dataset. The proportion of 

rejections in 5,000 simulations was taken as a measure of Type I 
error in null conditions and power in nonnull conditions.

Results

Type I Error Rates

In order to help identify the conditions when the tests are 
robust and when they are not, a standard test based on the normal 
approximation to the binomial distribution can be used (see 
Austin, 2009, or Brunner et al., 2002). Thus, according to this 
criterion, any empirical Type I rate that is higher than 0.0562 or 
lower than 0.0438 would be signifi cantly different from 0.05. In 
the tables, values that differ signifi cantly from the nominal alpha 
level of 0.05 are in boldface type. Tests with empirical estimates 
that are signifi cantly lower than the nominal level are referred to 
as conservative, while those whose rates are signifi cantly higher 
are referred to as liberal. With regards to the method of identifying 
a non-robust procedure, it should be pointed out that several 
standards have been used by researchers to identity non-robust 
procedures. Therefore, it should be noted that with other standards 
different interpretations of the results are possible.

Homogeneous data. Estimates of actual Type I error rate and 
power (percent) for the interaction groups by trials when the 
number of levels of the within-subjects factor was equal to four, 
six and eight (t = 4, 6, and 8) are shown in Tables 1-3 (top panel). 
As seen from the tables, all error rates were close to the nominal 
5% level when the OD-MBF, CC-MBF, and CPM-UN methods 
were used. However, MI-MBF rates were conservative (ranging 
from 3.12 to 4.22%) in 18 out of the 27 investigated conditions. It 
is important to note that the tendency of the MI-MBF test to be 
conservative was stronger when t = 4, but declined as the number 
of repeated measurements increased.

Heterogeneous data. As seen in Tables 1-3 (bottom panel), all 
error rates were close to the nominal 5% level when the OD-MBF 
procedure was used. The CC-MBF analysis was liberal (ranging 
from 5.92 to 6.58%) in 21 out of the 27 investigated conditions. 
Also, the CPM-UN method generally resulted in liberal rates of 
error; in fact, it was liberal (ranging from 6.32 to 9.52%) in 18 out 
of the 27 investigated conditions. The degree of liberalism of both 
approaches increased as the number of repeated measurements 
increased. On the other hand, error rates for the MI-MBF method 
were conservative (ranging from 2.72 to 4.22%) in three out of 
the 27 investigated conditions and liberal (ranging from 5.72 to 
6.30%) in three others.
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Table 1
Empirical Power and Type I Error Rates (percent) for the Interaction Term of a PRMD (t = 4, α = 5% and β = 20%)

OD-MBF analysis CC-MBF analysis MI-MBF analysis CPM-UN analysis

M Pairing Type I Error Power Type I Error Power Type I Error Power Type I Error Power

Homogeneity

5
Null

+
–

5.22
5.40
5.10

80.78
78.26
76.80

5.62
5.70
5.44

62.90
60.22
61.08

  3.80C

  4.22C

  3.74C

67.76
66.10
64.24

5.22
4.98
5.04

73.90
72.14
71.10

10
Null

+
–

5.22
5.40
5.10

80.78
78.26
76.80

5.62
5.70
5.44

62.90
60.22
61.08

  3.87C

  3.88C

  3.87C

68.02
65.46
65.24

5.22
4.98
5.04

73.90
72.14
71.10

20
Null

+
–

5.22
5.40
5.10

80.78
78.26
76.80

5.62
5.70
5.44

62.90
60.22
61.08

  3.29C

  3.32C

  3.12C

68.28
65.46
65.42

5.22
4.98
5.04

73.90
72.14
71.10

Heterogeneity

5
Null

+
–

4.86
5.58
4.92

61.26
62.38
53.96

5.54
  5.92L

5.62

55.88
55.92*

49.18

4.46
5.16

  3.92C

56.92
57.44
50.20

4.88
5.38
5.26

55.38
57.54
49.86

10
Null

+
–

4.86
5.58
4.92

61.26
62.38
53.96

5.54
  5.92L

5.62

55.88
55.92*

49.18

  3.36C

  3.80C

  3.28C

56.64
57.86
51.25

4.88
5.38
5.26

55.38
57.54
49.86

20
Null

+
–

4.86
5.58
4.92

61.26
62.38
53.96

5.54
  5.92L

5.62

55.88
55.92*

49.18

  3.22C

  3.78C

  2.72C

56.08
57.26
51.06

4.88
5.38
5.26

55.38
57.54
49.86

Note: OD-MBF = MBF based on original data; CC-MBF = MBF based on complete case; MI-MBF = MBF based on imputed data; CPM-UN = covariance pattern model based on an unstructured 
matrix; M = number of imputations performed with MI; t = number of levels of the within-subjects factor; Null pair = null pairing of group sizes and covariance matrices; + pair = positive pairing 
of group sizes and covariance matrices; – pair = negative pairing of group sizes and covariance matrices; C = empirical estimates signifi cantly lower than the nominal alpha level; L = empirical 
estimates signifi cantly higher than the nominal alpha level. * The asterisks correspond to the values associated with the conditions under which the approaches yielded empirical Type I error rates 
above the upper bound criterion (i.e., 5.70%). PRMD = partially repeated mesures design

Table 2
Empirical Power and Type I Error Rates (percent) for the Interaction Term of a PRMD (t = 6, α = 5% and β = 20%)

OD-MBF analysis CC-MBF analysis MI-MBF analysis CPM-UN analysis

M Pairing Type I Error Power Type I Error Power Type I Error Power Type I Error Power

Homogeneity

5
Null

+
–

4.82
5.04
5.10

80.52
77.78
78.44

4.86
4.78
5.08

49.52
44.76
48.92

5.40
5.62
4.86

66.20
65.92
62.18

5.40
4.76
5.08

72.10
70.16
69.96

10
Null

+
–

4.82
5.04
5.10

80.52
77.78
78.44

4.86
4.78
5.08

49.52
44.76
48.92

4.38
4.44
4.30

67.72
65.58
64.24

5.40
4.76
5.08

72.10
70.16
69.96

20
Null

+
–

4.82
5.04
5.10

80.52
77.78
78.44

4.86
4.78
5.08

49.52
44.76
48.92

  3.96C

  4.18C

  3.82C

66.54
65.00
63.20

5.40
4.76
5.08

72.10
70.16
69.96

Heterogeneity

5
Null

+
–

4.80
4.96
5.20

62.04
61.58
54.72

  5.96L

  6.14L

  6.08L

50.28*

48.50*

45.64*

5.32
5.46

 4.22C

60.16
57.64
54.32

6.56L

6.32L

6.84L

55.40*

53.72*

50.88*

10
Null

+
–

4.80
4.96
5.20

62.04
61.58
54.72

  5.96L

  6.14L

  6.08L

50.28*

48.50*

45.64*

5.06
4.66

  3.74C

59.08
59.18
53.56

6.56L

6.32L

6.84L

55.40*

53.72*

50.88*

20
Null

+
–

4.80
4.96
5.20

62.04
61.58
54.72

  5.96L

  6.14L

  6.08L

50.28*

48.50*

45.64*

  4.16C

  3.84C

  3.96C

59.50
56.80
52.66

6.56L

6.32L

6.84L

55.40*

53.72*

50.88*

Note: See the note in Table 1
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Power Rates

The homoscedastic and heteroscedastic power values (%) are 
also presented in Tables 1-3. Because power comparisons can 
be made between methods that give comparable Type I error 
control, only the power values for the procedures that provide 
a similar degree of Type I error control are reported in tables 
without additional information. The power values with asterisks 
correspond to the values associated with the conditions under 
which the approaches yielded empirical Type I error rates above 
the upper bound criterion (i.e., 5.70%).

Homogeneous data. As would be expected, the power values 
(percent) in Tables 1-3 (top panel) indicate that the OD-MBF 
procedure has more power than the remaining methods over the 
whole range of conditions that we have considered. At the same 
time, the results show that the CPM-UN outperformed the MI-
MBF and the CC-MBF methods. In particular, the power rates, 
averaged over all conditions studied, were 78.92%, 48.42%, 
65.40% and 70.24%, for the OD-MBF, CC-MBF, MI-MBF and 
CPM-UN methods, respectively. 

Heterogeneous data. The results in Tables 1-3 (bottom panel) 
indicate that the OD-MBF procedure has substantially more power 
than the CC-MBF approach and slightly more than the CPM-UN 
method over the whole range of conditions that we have considered. 
This was despite the fact that this difference is counteracted by the 
infl ated estimates of Type I error rate mentioned earlier for the 
last two procedures. On the other hand, when the homogeneity 
assumption was not met, the power rates of the MI-MBF method 
were comparable to that of the OD-MBF. Specifi cally, the power 
rates, averaged over all conditions studied, were 59.36% and 

56.6%, for MBF based on original data and MI-MBF methods, 
respectively. 

Discussion 

The primary aim of the present article was to provide the rules 
for combining the results obtained after applying a complete data 
approach to each of the different M imputed datasets of a PRMD 
when the assumption of homogeneity of variance-covariance 
matrices is violated. The proposed approach is the direct extension 
of the work by Vallejo and Ato (2006) and Raghunathan (2016) to 
analyze imputed values with the MBF procedure. As noted earlier, 
Vallejo and Ato (2006) restricted their approach to the analysis 
of complete repeated measures data without assuming equality 
of covariance matrices while Raghunathan (2016) focused on 
adapting the approach commonly known as Rubin’s rules (Rubin, 
1987) to sums of squares ANOVA, F-tests, and the like.

Our simulation study suggest that the MI-MBF approach (about 
10 imputations are suffi cient for good results) constitutes a viable 
alternative for testing the repeated measures interaction effects 
when the data are MAR and dispersion matrices vary across 
groups. However, it should be noted that there is no universally best 
statistical method available for the analysis of incomplete repeated 
measures data. On the whole, robustness and power results revealed 
that the MI-MBF approach had a slightly worse performance than 
tests based on the CPM-UN when the homogeneity assumption 
was met. In contrast, the MI-MBF approach outperformed that 
of the CPM-UN when the homogeneity assumption was not met. 
Most importantly for the results of the simulation study, without 
assuming equality of covariance matrices, the OD-MBF method 

Table 3
Empirical Power and Type I Error Rates (percent) for the Interaction Term of a PRMD (t = 8, α = 5% and β = 20%)

OD-MBF analysis CC-MBF analysis MI-MBF analysis CPM-UN analysis

M Pairing Type I Error Power Type I Error Power Type I Error Power Type I Error Power

Homogeneity

5
Null

+
–

4.72
5.04
4.94

80.20
78.52
78.40

4.74
4.64
4.96

37.36
33.50
37.48

5.50
5.62
4.68

67.64
67.56
62.66

5.00
4.38
4.46

68.72
67.64
66.42

10
Null

+
–

4.72
5.04
4.94

80.20
78.52
78.40

4.74
4.64
4.96

37.36
33.50
37.48

5.44
4.20

  4.26C

67.08
65.70
61.52

5.00
4.38
4.46

68.72
67.64
66.42

20
Null

+
–

4.72
5.04
4.94

80.20
78.52
78.40

4.74
4.64
4.96

37.36
33.50
37.48

  4.16C  
  4.06C

   3.92 C

66.02
63.86
61.74

5.00
4.38
4.46

68.72
67.64
66.42

Heterogeneity

5
Null

+
–

4.82
4.98
4.80

59.24
62.62
56.38

  6.58L

  6.36L

  6.24L

44.40*

43.22*

42.40*

  6.20L

  6.30L

5.18

58.96*

58.84*

56.18

 9.52L

 8.78L

 8.94L

55.88*

54.36*

52.30*

10
Null

+
–

4.82
4.98
4.80

59.24
62.62
56.38

  6.58L

  6.36L

  6.24L

44.40*

43.22*

42.40*

5.24
  5.72L

  4.28C

59.54
59.58*

55.60

 9.52L

 8.78L

 8.94L

55.88*

54.36*

52.30*

20
Null

+
–

4.82
4.98
4.80

59.24
62.62
56.38

  6.58L

  6.36L

  6.24L

44.40*

43.22*

42.40*

  4.28C

5.10
  4.26C

58.28
58.92
54.62

 9.52L

 8.78L

 8.94L

55.88*

54.36*

52.30*

Note: See the note in Table 1
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(i.e., based on complete dataset before introducing data absence) 
provides a modest power advantage over the MI-MBF approach. 
This is despite the fact that for the errors between the estimated 
Type I error rate and the nominal level 0.05, it is clear that the 
MI-MBF method gives the largest negative errors (tends to yield 
many conservative values) while the OD-MBF method has a much 
better performance in achieving the nominal level. 

Another important fi nding from this study is the profound 
effect of heterogeneity of covariance matrices on the power of 
all examined procedures, including the OD-MBF procedure. 
Compared to the case of equal covariance matrices and complete 
data, in the current study it was observed (these results are not 
reported to save space, but available from the fi rst author on request) 
that with unequal covariance matrices the sample size is required 
to increase by 25-30% in order to reach a specifi c statistical 
power of 80%. Obviously, with dropout rates of 10% at every time 
point, the sample size must be increased by a substantially higher 
percentage. However, longitudinal research often involves small 
samples (Hertzog, Lindenberger, Ghisletta, & von Oertzen, 2008). 
Therefore, researchers interested in carrying out studies that have 
suffi cient power to reject the null hypothesis should avoid planning 
to use small sample sizes whenever possible. 

On the other hand, the simulation study covered in this paper 
also reveal that the MI-MBF and CPM-UN methods are clearly 
a better choice than using the CC-MBF analysis, given that both 
approaches are superior in controlling Type I and Type II error 
rates. In fact, MI-MBF and CPM-UN methods are always at least 
as good as the CC-MBF analysis, and usually MI-MBF and CPM-
UN methods are better or substantially better. The CC-MBF only 
tends to perform quite well, compared to MI-MBF and CPM-UN 
analyses, when the number of repeated measurements is low (t = 
4). There is a simple reason for this: keeping the percentage of 

missing values constant, the number of cases to discard increases 
as does the number of repeated measures.

Finally, readers should note that our results and recommendations 
are based on assuming normality for the continuous outcome 
variable. The effect of non-normality on the Type I and Type II error 
rates will not be of much consequence in the case of near-normal 
populations. However, the presence of a fair degree of skewness 
and/or kurtosis, as is not uncommon in educational, health, and 
psychological studies (see, e.g., Blanca, Arnau, López-Montiel, 
Bono, & Bendayan, 2013; Bono, Blanca, Arnau, & Gómez-Benito, 
2017; Cain, Zhang, & Yuan, 2017), leads to a more conservative 
alpha level and, thus, to more demanding sample size requirements. 
Another limitation of our work is that the attrition rate is always 
assumed to be equal between two groups across the study. In other 
words, the missingness is only allowed to vary across time, but not by 
group by time. However, in longitudinal studies one may reasonably 
expect that selective attrition occurs. Therefore, before proceeding 
with the generalization of the two-stage approach developed in 
the current work, in future research it would be very useful to 
examine its performance under some of the conditions maintained 
constant due to not being the focus of this article (e.g., missing data 
mechanisms, patterns of missingness, number of groups, shape of 
distribution, or group by time related dropout rates).
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