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One-way analysis of variance (ANOVA) or F-test is one 
of the most common statistical techniques in educational and 
psychological research (Keselman et al., 1998; Kieffer, Reese, & 
Thompson, 2001). The F-test assumes that the outcome variable 
is normally and independently distributed with equal variances 
among groups. However, real data are often not normally 
distributed and variances are not always equal. With regard to 
normality, Micceri (1989) analyzed 440 distributions from ability 
and psychometric measures and found that most of them were 
contaminated, including different types of tail weight (uniform to 
double exponential) and different classes of asymmetry. Blanca, 
Arnau, López-Montiel, Bono, and Bendayan (2013) analyzed 
693 real datasets from psychological variables and found that 
80% of them presented values of skewness and kurtosis ranging 
between -1.25 and 1.25, with extreme departures from the normal 

distribution being infrequent. These results were consistent with 
other studies with real data (e.g., Harvey & Siddique, 2000; 
Kobayashi, 2005; Van Der Linder, 2006).

The effect of non-normality on F-test robustness has, since the 
1930s, been extensively studied under a wide variety of conditions. 
As our aim is to examine the independent effect of non-normality 
the literature review focuses on studies that assumed variance 
homogeneity. Monte Carlo studies have considered unknown 
and known distributions such as mixed non-normal, lognormal, 
Poisson, exponential, uniform, chi-square, double exponential, 
Student’s t, binomial, gamma, Cauchy, and beta (Black, Ard, 
Smith, & Schibik, 2010; Bünning, 1997; Clinch & Kesselman, 
1982; Feir-Walsh & Thoothaker, 1974; Gamage & Weerahandi, 
1998; Lix, Keselman, & Keselman, 1996; Patrick, 2007; Schmider, 
Ziegler, Danay, Beyer, & Bühner, 2010). 

One of the fi rst studies on this topic was carried out by Pearson 
(1931), who found that F-test was valid provided that the deviation 
from normality was not extreme and the number of degrees of 
freedom apportioned to the residual variation was not too small. 
Norton (1951, cit. Lindquist, 1953) analyzed the effect of distribution 
shape on robustness (considering either that the distributions had 
the same shape in all the groups or a different shape in each group) 
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Background: The robustness of F-test to non-normality has been studied 
from the 1930s through to the present day. However, this extensive 
body of research has yielded contradictory results, there being evidence 
both for and against its robustness. This study provides a systematic 
examination of F-test robustness to violations of normality in terms of 
Type I error, considering a wide variety of distributions commonly found 
in the health and social sciences. Method: We conducted a Monte Carlo 
simulation study involving a design with three groups and several known 
and unknown distributions. The manipulated variables were: Equal and 
unequal group sample sizes; group sample size and total sample size; 
coeffi cient of sample size variation; shape of the distribution and equal 
or unequal shapes of the group distributions; and pairing of group size 
with the degree of contamination in the distribution. Results: The results 
showed that in terms of Type I error the F-test was robust in 100% of the 
cases studied, independently of the manipulated conditions.
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Datos no normales: ¿es el ANOVA una opción válida? Antecedentes: 
las consecuencias de la violación de la normalidad sobre la robustez del 
estadístico F han sido estudiadas desde 1930 y siguen siendo de interés en 
la actualidad. Sin embargo, aunque la investigación ha sido extensa, los 
resultados son contradictorios, encontrándose evidencia a favor y en contra 
de su robustez. El presente estudio presenta un análisis sistemático de la 
robustez del estadístico F en términos de error de Tipo I ante violaciones 
de la normalidad, considerando una amplia variedad de distribuciones 
frecuentemente encontradas en ciencias sociales y de la salud. Método: se 
ha realizado un estudio de simulación Monte Carlo considerando un diseño 
de tres grupos y diferentes distribuciones conocidas y no conocidas. Las 
variables manipuladas han sido: igualdad o desigualdad del tamaño de los 
grupos, tamaño muestral total y de los grupos; coefi ciente de variación 
del tamaño muestral; forma de la distribución e igualdad o desigualdad de 
la forma en los grupos; y emparejamiento entre el tamaño muestral con 
el grado de contaminación en la distribución. Resultados: los resultados 
muestran que el estadístico F es robusto en términos de error de Tipo I en 
el 100% de los casos estudiados, independientemente de las condiciones 
manipuladas.
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and found that, in general, F-test was quite robust, the effect being 
negligible. Likewise, Tiku (1964) stated that distributions with 
skewness values in a different direction had a greater effect than 
did those with values in the same direction unless the degrees of 
freedom for error were fairly large. However, Glass, Peckham, and 
Sanders (1972) summarized these early studies and concluded 
that the procedure was affected by kurtosis, whereas skewness 
had very little effect. Conversely, Harwell, Rubinstein, Hayes, and 
Olds (1992), using meta-analytic techniques, found that skewness 
had more effect than kurtosis. A subsequent meta-analytic study 
by Lix et al. (1996) concluded that Type I error performance did 
not appear to be affected by non-normality.

These inconsistencies may be attributable to the fact that a 
standard criterion has not been used to assess robustness, thus 
leading to different interpretations of the Type I error rate. The use 
of a single and standard criterion such as that proposed by Bradley 
(1978) would be helpful in this context. According to Bradley’s 
(1978) liberal criterion a statistical test is considered robust if the 
empirical Type I error rate is between .025 and .075 for a nominal 
alpha level of .05. In fact, had Bradley’s criterion of robustness 
been adopted in the abovementioned studies, many of their results 
would have been interpreted differently, leading to different 
conclusions. Furthermore, when this criterion is considered, more 
recent studies provide empirical evidence for the robustness of 
F-test under non-normality with homogeneity of variances (Black 
et al., 2010; Clinch & Keselman, 1982; Feir-Walsh & Thoothaker, 
1974; Gamage & Weerahandi, 1998; Kanji, 1976; Lantz, 2013; 
Patrick, 2007; Schmider et al., 2010; Zijlstra, 2004).

Based on most early studies, many classical handbooks on 
research methods in education and psychology draw the following 
conclusions: Moderate departures from normality are of little 
concern in the fi xed-effects analysis of variance (Montgomery, 
1991); violations of normality do not constitute a serious problem, 
unless the violations are especially severe (Keppel, 1982); F-test is 
robust to moderate departures from normality when sample sizes are 
reasonably large and are equal (Winer, Brown, & Michels, 1991); and 
researchers do not need to be concerned about moderate departures 
from normality provided that the populations are homogeneous in 
form (Kirk, 2013). To summarize, F-test is robust to departures from 
normality when: a) the departure is moderate; b) the populations 
have the same distributional shape; and c) the sample sizes are large 
and equal. However, these conclusions are broad and ambiguous, 
and they are not helpful when it comes to deciding whether or not 
F-test can be used. The main problem is that expressions such as 
“moderate”, “severe” and “reasonably large sample size” are subject 
to different interpretations and, consequently, they do not constitute 
a standard guideline that helps applied researchers decide whether 
they can trust their F-test results under non-normality.

Given this situation, the main goals of the present study are to 
provide a systematic examination of F-test robustness, in terms 
of Type I error, to violations of normality under homogeneity 
using a standard criterion such as that proposed by Bradley 
(1978). Specifi cally, we aim to answer the following questions: Is 
F-test robust to slight and moderate departures from normality? 
Is it robust to severe departures from normality? Is it sensitive 
to differences in shape among the groups? Does its robustness 
depend on the sample sizes? Is its robustness associated with equal 
or unequal sample sizes? 

To this end, we designed a Monte Carlo simulation study to 
examine the effect of a wide variety of distributions commonly 

found in the health and social sciences on the robustness of F-test. 
Distributions with a slight and moderate degree of contamination 
(Blanca et al., 2013) were simulated by generating distributions 
with values of skewness and kurtosis ranging between -1 and 1. 
Distributions with a severe degree of contamination (Micceri, 
1989) were represented by exponential, double exponential, and 
chi-square with 8 degrees of freedom. In both cases, a wide range 
of sample sizes were considered with balanced and unbalanced 
designs and with equal and unequal distributions in groups. With 
unequal sample size and unequal shape in the groups, the pairing 
of group sample size with the degree of contamination in the 
distribution was also investigated. 

Method

Instruments

We conducted a Monte Carlo simulation study with non-
normal data using SAS 9.4. (SAS Institute, 2013). Non-normal 
distributions were generated using the procedure proposed by 
Fleishman (1978), which uses a polynomial transformation to 
generate data with specifi c values of skewness and kurtosis.

Procedure

In order to examine the effect of non-normality on F-test 
robustness, a one-way design with 3 groups and homogeneity of 
variance was considered. The group effect was set to zero in the 
population model. The following variables were manipulated: 

1. Equal and unequal group sample sizes. Unbalanced designs 
are more common than balanced designs in studies involving 
one-way and factorial ANOVA (Golinski & Cribbie, 2009; 
Keselman et al., 1998). Both were considered in order to 
extend our results to different research situations. 

2. Group sample size and total sample size. A wide range of 
group sample sizes were considered, enabling us to study 
small, medium, and large sample sizes. With balanced 
designs the group sizes were set to 5, 10, 15, 20, 25, 30, 40, 
50, 60, 70, 80, 90, and 100, with total sample size ranging 
from 15 to 300. With unbalanced designs, group sizes were 
set between 5 and 160, with a mean group size of between 
10 and 100 and total sample size ranging from 15 to 300. 

3. Coeffi cient of sample size variation (Δn), which represents 
the amount of inequality in group sizes. This was computed 
by dividing the standard deviation of the group sample size 
by its mean. Different degrees of variation were considered 
and were grouped as low, medium, and high. A low Δn 
was fi xed at approximately 0.16 (0.141 - 0.178), a medium 
coeffi cient at 0.33 (0.316 - 0.334), and a high value at 0.50 
(0.491 - 0.521). Keselman et al. (1998) showed that the ratio 
of the largest to the smallest group size was greater than 3 
in 43.5% of cases. With Δn = 0.16 this ratio was equal to 1.5, 
with Δn = 0.33 it was equal to either 2.3 or 2.5, and with Δn 
= 0.50 it ranged from 3.3 to 5.7.

4. Shape of the distribution and equal and unequal shape in 
the groups. Twenty-two distributions were investigated, 
involving several degrees of deviation from normality and 
with both equal and unequal shape in the groups. For equal 
shape and slight and moderate departures from normality, 
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the distributions had values of skewness (γ
1
) and kurtosis (γ

2
) 

ranging between -1 and 1, these values being representative 
of real data (Blanca et al., 2013). The values of γ

1
 and γ

2 

are presented in Table 2 (distributions 1-12). For severe 
departures from normality, distributions had values of γ

1
 and 

γ
2
 corresponding to the double exponential, chi-square with 

8 degrees of freedom, and exponential distributions (Table 
2, distributions 13-15). For unequal shape, the values of γ

1
 

and γ
2
 of each group are presented in Table 3. Distributions 

16-21 correspond to slight and moderate departures from 
normality and distribution 22 to severe departure.

5. Pairing of group size with degree of contamination in the 
distribution. This condition was included with unequal 
shape and unequal sample size. The pairing was positive 
when the largest group size was associated with the greater 
contamination, and vice versa. The pairing was negative 
when the largest group size was associated with the smallest 
contamination, and vice versa. The specifi c conditions with 
unequal sample size are shown in Table 1. 

Ten thousand replications of the 1308 conditions resulting 
from the combination of the above variables were performed at a 
signifi cance level of .05. This number of replications was chosen 
to ensure reliable results (Bendayan, Arnau, Blanca, & Bono, 
2014; Robey & Barcikowski, 1992).

Data analysis

Empirical Type I error rates associated with F-test were 
analyzed for each condition according to Bradley’s robustness 
criterion (1978).

Results
 
Tables 2 and 3 show descriptive statistics for the Type I error 

rate across conditions for equal and unequal shapes. Although the 
tables do not include all available information (due to article length 
limitations), the maximum and minimum values are suffi cient for 
assessing robustness. Full tables are available upon request from 
the corresponding author. 

All empirical Type I error rates were within the bounds of 
Bradley’s criterion. The results show that F-test is robust for 3 
groups in 100% of cases, regardless of the degree of deviation 
from a normal distribution, sample size, balanced or unbalanced 
cells, and equal or unequal distribution in the groups.

Discussion

We aimed to provide a systematic examination of F-test 
robustness to violations of normality under homogeneity of 
variance, applying Bradley’s (1978) criterion. Specifi cally, we 
sought to answer the following question: Is F-test robust, in terms 
of Type I error, to slight, moderate, and severe departures from 
normality, with various sample sizes (equal or unequal sample 
size) and with same or different shapes in the groups? The answer 
to this question is a resounding yes, since F-test controlled Type 
I error to within the bounds of Bradley’s criterion. Specifi cally, 
the results show that F-test remains robust with 3 groups when 
distributions have values of skewness and kurtosis ranging 
between -1 and 1, as well as with data showing a greater departure 

from normality, such as the exponential, double exponential, and 
chi-squared (8) distributions. This applies even when sample sizes 
are very small (i.e., n= 5) and quite different in the groups, and 
also when the group distributions differ signifi cantly. In addition, 
the test’s robustness is independent of the pairing of group size 
with the degree of contamination in the distribution. 

Our results support the idea that the discrepancies between 
studies on the effect of non-normality may be primarily attributed 
to differences in the robustness criterion adopted, rather than to 
the degree of contamination of the distributions. These fi ndings 
highlight the need to establish a standard criterion of robustness to 
clarify the potential implications when performing Monte Carlo 
studies. The present analysis made use of Bradley’s criterion, 
which has been argued to be one of the most suitable criteria for 

Table 1
Specifi c conditions studied under non-normality for unequal shape in 

the groups as a function of total sample size (N), means group size (N/J), 
coeffi cient of sample size variation (Δn), and pairing of group size with the 
degree of distribution contamination: (+) the largest group size is associated 

with the greater contamination and vice versa, and (-) the largest group size is 
associated with the smallest contamination and vice versa

n Pairing

N N/J Δn + –

30 10 0.16
0.33
0.50

8, 10, 12
6, 10, 14
5, 8, 17

12, 10, 8
14, 10, 6
17, 8, 5

45 15 0.16
0.33
0.50

12, 15, 18
9, 15, 21
6, 15, 24

18, 15, 12
21, 15, 9
24, 15, 6

60 20 0.16
0.33
0.50

16, 20, 24
12, 20, 28
8, 20, 32

24, 20, 16
28, 20, 12
32, 20, 8

75 25 0.16
0.33
0.50

20, 25, 30
15, 25, 35
10, 25, 40

30, 25, 20
35, 25, 15
40, 25, 10

90 30 0.16
0.33
0.50

24, 30, 36
18, 30, 42
12, 30, 48

36, 30, 24
42, 30, 18
48, 30, 12

120 40 0.16
0.33
0.50

32, 40, 48
24, 40, 56
16, 40, 64

48, 40, 32
56, 40, 24
64, 40, 16

150 50 0.16
0.33
0.50

40, 50, 60
30, 50, 70
20, 50, 80

60, 50, 40
70, 50, 30
80, 50, 20

180 60 0.16
0.33
0.50

48, 60, 72
36, 60, 84
24, 60, 96

72, 60, 48
84, 60, 36
96, 60, 24

210 70 0.16
0.33
0.50

56, 70, 84
42, 70, 98
28, 70, 112

84, 70, 56
98, 70, 42
112, 70, 28

240 80 0.16
0.33
0.50

64, 80, 96
48, 80, 112
32, 80, 128

96, 80, 64
112, 80, 48
128, 80, 32

270 90 0.16
0.33
0.50

72, 90, 108
54, 90, 126
36, 90, 144

108, 90, 72
126, 90, 54
144, 90, 36

300 100 0.16
0.33
0.50

80, 100, 120
60, 100, 140
40, 100, 160

120, 100, 80
140, 100, 60
160, 100, 40
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examining the robustness of statistical tests (Keselman, Algina, 
Kowalchuk, & Wolfi nger, 1999). In this respect, our results are 
consistent with previous studies whose Type I error rates were 
within the bounds of Bradley’s criterion under certain departures 
from normality (Black et al., 2010; Clinch & Keselman, 1982; 
Feir-Walsh & Thoothaker, 1974; Gamage & Weerahandi, 1998; 
Kanji, 1976; Lantz, 2013; Lix et al., 1996; Patrick, 2007; Schmider 
et al., 2010; Zijlstra, 2004). By contrast, however, our results do 
not concur, at least for the conditions studied here, with those 
classical handbooks which conclude that F-test is only robust 
if the departure from normality is moderate (Keppel, 1982; 
Montgomery, 1991), the populations have the same distributional 
shape (Kirk, 2013), and the sample sizes are large and equal 
(Winer et al., 1991). 

Our fi ndings are useful for applied research since they show 
that, in terms of Type I error, F-test remains a valid statistical 
procedure under non-normality in a variety of conditions. Data 
transformation or nonparametric analysis is often recommended 
when data are not normally distributed. However, data 
transformations offer no additional benefi ts over the good control 
of Type I error achieved by F-test. Furthermore, it is usually 
diffi cult to determine which transformation is appropriate for a set 
of data, and a given transformation may not be applicable when 

groups differ in shape. In addition, results are often diffi cult to 
interpret when data transformations are adopted. There are also 
disadvantages to using non-parametric procedures such as the 
Kruskal-Wallis test. This test converts quantitative continuous 
data into rank-ordered data, with a consequent loss of information. 
Moreover, the null hypothesis associated with the Kruskal-Wallis 
test differs from that of F-test, unless the distribution of groups 
has exactly the same shape (see Maxwell & Delaney, 2004). Given 
these limitations, there is no reason to prefer the Kruskal-Wallis test 
under the conditions studied in the present paper. Only with equal 
shape in the groups might the Kruskal-Wallis test be preferable, 
given its power advantage over F-test under specifi c distributions 
(Büning, 1997; Lantz, 2013). However, other studies suggest that 
F-test is robust, in terms of power, to violations of normality under 
certain conditions (Ferreira, Rocha, & Mequelino, 2012; Kanji, 
1976; Schmider et al., 2010), even with very small sample size (n = 
3; Khan & Rayner, 2003). In light of these inconsistencies, future 
research should explore the power of F-test when the normality 
assumption is not met. At all events, we encourage researchers 
to analyze the distribution underlying their data (e.g., coeffi cients 
of skewness and kurtosis in each group, goodness of fi t tests, and 
normality graphs) and to estimate a priori the sample size needed 
to achieve the desired power. 

Table 2
Descriptive statistics of Type I error for F-test with equal shape for each combination of skewness (γ

1
) and kurtosis (γ

2
) across all conditions

Distributions γ1 γ2 n Min Max Mdn M SD

1 0 0.4 =
≠

.0434

.0445
.0541
.0556

.0491

.0497
.0493
.0496

.0029

.0022

2 0 0.8 =
≠

.0444

.0458
.0534
.0527

.0474

.0484
.0479
.0487

.0023

.0016

3 0 -0.8 =
≠

.0468

.0426
.0512
.0532

.0490

.0486
.0491
.0487

.0014

.0024

4 0.4 0 =
≠

.0360

.0392
.0499
.0534

.0469

.0477
.0457
.0472

.0044

.0032

5 0.8 0 =
≠

.0422

.0433
.0528
.0553

.0477

.0491
.0476
.0491

.0029

.0030

6 -0.8 0 =
≠

.0427

.0457
.0551
.0549

.0475

.0487
.0484
.0492

.0038

.0024

7 0.4 0.4 =
≠

.0426

.0417
.0533
.0533

.0487

.0486
.0488
.0487

.0031

.0026

8 0.4 0.8 =
≠

.0449

.0456
.0516
.0537

.0483

.0489
.0485
.0489

.0019

.0020

9 0.8 0.4 =
≠

.0372

.0413
.0494
.0518

.0475

.0481
.0463
.0475

.0033

.0026

10 0.8 1 =
≠

.0458

.0463
.0517
.0540

.0494

.0502
.0492
.0501

.0017

.0023

11 1 0.8 =
≠

.0398

.0430
.0506
.0542

.0470

.0489
.0463
.0485

.0028

.0029

12 1 1 =
≠

.0377

.0366
.0507
.0512

.0453

.0466
.0451
.0462

.0042

.0032

13 0 3 =
≠

.0443

.0435
.0517
.0543

.0477

.0490
.0479
.0489

.0022

.0024

14 1 3 =
≠

.0431

.0462
.0530
.0548

.0487

.0494
.0486
.0499

.0032

.0017

15 2 6 =
≠

.0474

.0442
.0524
.0526

.0496

.0483
.0497
.0488

.0017

.0022
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As the present study sought to provide a systematic examination 
of the independent effect of non-normality on F-test Type I error 
rate, variance homogeneity was assumed. However, previous studies 
have found that F-test is sensitive to violations of homogeneity 
assumptions (Alexander & Govern, 1994; Blanca, Alarcón, Arnau, 
& Bono, in press; Büning, 1997; Gamage & Weerahandi, 1998; 
Harwell et al., 1992; Lee & Ahn, 2003; Lix et al., 1996; Moder, 2010; 
Patrick, 2007; Yiǧit & Gökpinar, 2010; Zijlstra, 2004), and several 
procedures have been proposed for dealing with heteroscedasticity 
(e.g., Alexander & Govern, 1994; Brown-Forsythe, 1974; Chen & 
Chen, 1998; Krishnamoorthy, Lu, & Mathew, 2007; Lee & Ahn, 
2003; Li, Wang, & Liang, 2011; Lix & Keselman, 1998; Weerahandi, 
1995; Welch, 1951). This suggests that heterogeneity has a greater 

effect on F-test robustness than does non-normality. Future research 
should therefore also consider violations of homogeneity.

To sum up, the present results provide empirical evidence for 
the robustness of F-test under a wide variety of conditions (1308) 
involving non-normal distributions likely to represent real data. 
Researchers can use these fi ndings to determine whether F-test is 
a valid option when testing hypotheses about means in their data. 

Acknowledgements

This research was supported by grants PSI2012-32662 and 
PSI2016-78737-P (AEI/FEDER, UE; Spanish Ministry of 
Economy, Industry, and Competitiveness).

Table 3
Descriptive statistics of Type I error for F-test with unequal shape for each combination of skewness (γ

1
) and kurtosis (γ

2
) across all conditions

Distributions Group γ1 γ2 n Min Max Mnd M SD

16 1
2
3

0
0
0

0.2
0.4
0.6

=
≠

.0434

.0433
.0541
.0540

.0491

.0490
.0493
.0487

.0029

.0025

17 1
2
3

0
0
0

0.2
0.4
-0.6

=
≠

.0472

.0409
.0543
.0579

.0513

.0509
.0509
.0510

.0024

.0033

18 1
2
3

0.2
0.4
0.6

0
0
0

=
≠

.0426

.0409
.0685
.0736

.0577

.0563
.0578
.0569

.0077

.0072

19 1
2
3

0.2
0.4
-0.6

0
0
0

=
≠

.0481

.0449
.0546
.0574

.0501

.0497
.0504
.0499

.0020

.0024

20 1
2
3

0.2
0.4
0.6

0.4
0.6
0.8

=
≠

.0474

.0433
.0524
.0662

.0496

.0535
.0497
.0545

.0017

.0057

21 1
2
3

0.2
0.6
1

0.4
0.8
1.2

=
≠

.0462

.0419
.0537
.0598

.0503

.0499
.0501
.0502

.0024

.0025

22 1
2
3

0
1
2

3
3
6

=
≠

.0460

.0424
.0542
.0577

.0490

.0503
.0494
.0499

.0027

.0029
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